Calderón-Zygmund theory for non-convolution type nonlocal equations with continuous coefficient
Tóm tắt
Từ khóa
Tài liệu tham khảo
Benyi, A., Oh, T.: The sobolev inequality on the torus revisited. Publ. Math. Debrecen, 83(3) (2013)
Brasco, L., Lindgren, E.: Higher Sobolev regularity for the fractional $$p$$-Laplace equation in the superquadratic case. Adv. Math. 304, 300–354 (2017)
Brasco, L., Lindgren, E., Schikorra, A.: Higher Hölder regularity for the fractional $$p$$-Laplacian in the superquadratic case. Adv. Math. 338, 782–846 (2018)
Cozzi, M.: Interior regularity of solutions of non-local equations in Sobolev and Nikol’skii spaces. Ann. Mat . Pura Appl. (4) 196(2), 555–578 (2017)
del Teso, F., Gómez-Castro, D., Vázquez, J. L.: Three representations of the fractional $$p$$-laplacian: semigroup, extension and balakrishnan formulas (2020)
Di Castro, A., Kuusi, T., Palatucci, G.: Nonlocal harnack inequalities. J. Funct. Anal. 267, 1807–1836 (2014)
Di Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional $$p$$-minimizers. Ann. Inst . H. Poincaré Anal. Non Linéaire 33(5), 1279–1299 (2016)
Dong, H., Kim, D.: On Lp-estimates for a class of non-local elliptic equations. J. Funct. Anal. 262(3), 1166–1199 (2012)
Fall, M. M.: Constant nonlocal mean curvatures surfaces and related problems. In Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. III. Invited lectures, pages 1613–1637. World Sci. Publ., Hackensack, NJ (2018)
Kassmann, M.: The theory of De Giorgi for non-local operators. C. R. Math. Acad. Sci. Paris 345(11), 621–624 (2007)
Mengesha, T., Schikorra, A., Yeepo, S.: Calderon-Zygmund type estimates for nonlocal PDE with Hölder continuous kernel. Adv. Math. 383, 107692, 64 (2021)
Mikulevičius, R., Pragarauskas, H.: On the Cauchy problem for integro-differential operators in Sobolev classes and the martingale problem. J. Differ. Equ. 256(4), 1581–1626 (2014)
Moustapha Fall, M.: Regularity results for nonlocal equations and applications. Calc. Var. and PDE (accepted), June (2018)
Nowak, S.: $$H^{s, p}$$ regularity theory for a class of nonlocal elliptic equations. Nonlinear Anal. 195, 111730, 28 (2020)
Nowak, S.: Higher Hölder regularity for nonlocal equations with irregular kernel. Calc. Var. Partial Differ. Equ. 60(1), 24, 37 (2021)
Nowak, S.: Improved Sobolev regularity for linear nonlocal equations with VMO coefficients. Math. Ann. (2022)
Nowak, S.: Regularity theory for nonlocal equations with VMO coefficients. Ann.H.Poinc. (accepted) (2021)
Nowak, S.: Higher integrability for nonlinear nonlocal equations with irregular kernel. Adv. Anal. Geom. 3, 459–492 (2021)
Roncal, L., Stinga, P.R.: Fractional Laplacian on the torus. Commun. Contemp. Math. 18(3), 1550033, 26 (2016)
Runst, T., Sickel, W.: Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations. De Gruyter Series in Nonlinear Analysis and Applications, vol. 3. Walter de Gruyter & Co., Berlin (1996)
Schikorra, A.: Boundary equations and regularity theory for geometric variational systems with Neumann data. Arch. Ration. Mech. Anal. 229(2), 709–788 (2018)