Tính toán các thuốc nhuộm BODIPY trong trạng thái cơ bản và trạng thái kích thích bằng các hàm M06-2X và PBE0

Journal of Molecular Modeling - Tập 22 - Trang 1-7 - 2016
Marina Laine1, Nuno A. Barbosa1, Robert Wieczorek1, Mikhail Ya. Melnikov2, Aleksander Filarowski1,3
1Faculty of Chemistry, University of Wroclaw, Wroclaw, Poland
2Department of Chemistry, Moscow State University, Moscow, Russia
3Department of Physics, Industrial University of Tyumen, Tyumen, Russia

Tóm tắt

Một số thuốc nhuộm huỳnh quang dựa trên BODIPY (4,4′-difluoro-4-bora-3a,4a-diaza-s-indacene) đã được nghiên cứu lý thuyết. Bài báo này trình bày kết quả tính toán các thuốc nhuộm BODIPY trong trạng thái cơ bản và trạng thái kích thích, được thực hiện bằng các phương pháp DFT và TD-DFT tương ứng. Ảnh hưởng của nhóm thế N,N-dimethylaminobenzyl, ortho-fluorophenol và methyl cũng như độ phân cực của dung môi đến các vị trí của các băng hấp thụ và phát xạ của các thuốc nhuộm đã được phân tích. Dữ liệu tính toán thu được trong công trình này đã được so sánh với dữ liệu thực nghiệm tương ứng. Các xu hướng trong dữ liệu thực nghiệm được phát hiện là đồng ý với những gì được thể hiện bởi dữ liệu tính toán. Sự khác biệt giữa các đường cong tiềm năng thu được khi sử dụng phương pháp phản ứng tuyến tính (LR) và phương pháp trạng thái cụ thể (SS) cho trạng thái cơ bản và trạng thái kích thích cũng được báo cáo.

Từ khóa

#BODIPY #thuốc nhuộm huỳnh quang #trạng thái cơ bản #trạng thái kích thích #DFT #TD-DFT

Tài liệu tham khảo

Treibs A, Kreuzer F-H (1968) Difluorboryl-Komplexe von Di- und Tripyrrylmethenen. Liebigs Ann Chem 718:208–223 Loudet A, Burgess K (2007) Dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932 Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41:1130–1172 Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent BODIPY dyes: versatility unsurpassed. Ang Chem Int Ed 47:1184–1201 Benstead M, Mehl GH, Boyle RW (2011) 4,4′-Difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPYs) as components of novel light active materials. Tetrahedron 67:3573–3601 Knut R, Resch-Genger U (2002) Rigidization, preorientation and electronic decoupling—the ‘magic triangle’ for the design of highly efficient fluorescent sensors and switches. Chem Soc Rev 31:116–127 Yuming Y, Zhao Q, Feng W, Li F (2013) Luminescent chemodosimeters for bioimaging. Chem Rev 113:192–270 Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y (2010) New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev 110:2620–2640 Le Guennic B, Chibani S, Charaf-Eddin A, Ziessel R, Ulrich G, Jacquemin D (2013) The NBO pattern in luminescent chromophores: unravelling excited-state features using TD-DFT. Phys Chem Chem Phys 15:7534–7540 Chibani S, Le Guennic B, Charaf-Eddin A, Maury O, Andraud C, Jacquemin D (2012) On the computation of adiabatic energies in azaboron-dipyrromethene dyes. J Chem Theory Comput 8:3303–3313 Jiao L, Yu C, Wang J, Briggs EA, Besley NA, Robinson D, Ruedas-Rama MJ, Orte A, Crovetto L, Talavera EM, Alvarez-Pez JM, Van der Auweraer M, Boens N (2015) Unusual spectroscopic and photophysical properties of meso-tert-butylBODIPY in comparison to related alkylated BODIPY dyes. RSC Adv 5:89375–89388 Chibani S, Le Guennic B, Charaf-Eddin A, Laurent AD, Jacquemin D (2013) Revisiting the optical signatures of BODIPY dyes with theoretical tools. Chem Sci 4:1950–1963 Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42:845–856 Alberto ME, De Simone BC, Mazzone G, Quartarolo AD, Russo N (2014) Theoretical determination of electronic spectra and intersystem spin–orbit coupling: the case of isoindole-BODIPY dyes. J Chem Theory Comput 10:4006–4013 Ji S, Ge J, Escudero D, Wang Z, Zhao J, Jacquemin D (2015) Molecular structure–intersystem crossing relationship of heavy-atom-free BODIPY triplet photosensitizers. J Org Chem 80:5958–5963 Mazzone G, Quartarolo AD, Russo N (2016) PDT-correlated photophysical properties of thienopyrrole BODIPY derivatives. Theoretical insights. Dyes Pigments 130:9–15 Santoro F, Jacquemin D (2016) Going beyond the vertical approximation with timedependent density functional theory. WIREs Comput Mol Sci. doi:10.1002/wcms.1260 Filarowski A, Kluba M, Cieślik-Boczula K, Koll A, Kochel A, Pandey L, De Borggraeve W, Van der Auweraer M, Catalán J, Boens N (2010) Generalized solvent scales as a tool for investigating solvent dependence of spectroscopic and kinetic parameters. Application to fluorescent BODIPY dyes. Photochem Photobiol Sci 9:996–1008 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision D.01. Gaussian, Inc., Wallingford Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170 Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241 Ditchfield R, Hehre WJ, Pople JA (1971) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728 Hehre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261 Hariharan PC, Pople JA (1973) Influence of polarization functions on molecular-orbital hydrogenation energies. Theor Chem Acc 28:213–222 Hariharan PC, Pople JA (1974) Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory. Mol Phys 27:209–214 Gordon MS (1980) The isomers of silacyclopropane. Chem Phys Lett 76:163–168 Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA, Gordon MS (1982) Self‐consistent molecular orbital methods. XXIII. A polarization‐type basis set for second‐row elements. J Chem Phys 77:3654–3665 Binning RC Jr, Curtiss LA (1990) Compact contracted basis sets for third-row atoms: Ga–Kr. J Comp Chem 11:1206–1216 Blaudeau J-P, McGrath MP, Curtiss LA, Radom L (1997) Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J Chem Phys 107:5016–5021 Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) 6-31G* basis set for atoms K through Zn. J Chem Phys 109:1223–1229 Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) 6-31G* basis set for third-row atoms. J Comp Chem 22:976–984 Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871 Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138 Petersilka M, Gossmann UJ, Gross EKU (1996) Excitation energies from time-dependent density-functional theory. Phys Rev Lett 76:1212–1215 Casida ME (1995) In: Chong DP (ed) Recent advances in density functional methods. World Scientific, Singapore, 1:155–192 Miertuš S, Scrocco E, Tomasi J (1981) Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129 Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) Geometries and properties of excited states in the gas phase and in solution: theory and application of a time-dependent density functional theory polarizable continuum model. J Chem Phys 124:094107–094121 Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093 Cossi M, Barone V (2001) Time-dependent density functional theory for molecules in liquid solutions. J Chem Phys 115:4708–4717 Cammi R, Mennucci B, Tomasi J (2000) Fast evaluation of geometries and properties of excited molecules in solution: a Tamm–Dancoff model with application to 4-dimethylaminobenzonitrile. J Phys Chem A 104:5631–5637 Cossi M, Barone V (2000) Solvent effect on vertical electronic transitions by the polarizable continuum model. J Chem Phys 112:2427–2435 Hansch C, Leo A, Taft RW (1991) A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 91:165–195 Grabowski ZR, Rotkiewicz K, Rettig W (2003) Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem Rev 103:3899–4032 Chulvi K, Costero AM, Ochando LE, Gil S, Vivancos J-L, Gavina P (2015) Solvatochromic and single crystal studies of two neutral triarylmethane dyes with a quinone methide structure. Molecules 20:20688–20698 Chibani S, Charaf-Eddin A, Mennucci B, Le Guennic B, Jacquemin D (2014) Optical signatures of OBO fluorophores: a theoretical analysis. J Chem Theory Comput 10:805–815 Chibani S, Budzak S, Medved M, Mennucci B, Jacquemin D (2014) Full cLR-PCM calculations of the solvatochromic effects on emission energies. Phys Chem Chem Phys 47:26024–26029 Lippert EZ (1955) Dipolmoment und Elektronenstruktur von angeregten Molekülen. Z Naturforsch A 10:541–545 Mataga N, Kaifu Y, Koizumi M (1955) The solvent effect on fluorescence spectrum. Change of solute–solvent interaction during the lifetime of excited solute molecule. Bull Chem Soc Jpn 28:690–691 Mataga N, Kaifu Y, Koizumi M (1956) Solvent effects upon fluorescence spectra and the dipole-moments of excited molecules. Bull Chem Soc Jpn 29:465–470 Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358 Deniz E, Isbasar GC, Bozdemir OA, Yildirim LT, Siemiarczuk A, Akkaya EU (2008) Bidirectional switching of near IR emitting boradiazaindacene fluorophores. Org Lett 16:3401–3403 Rurack K, Kollmannsberger M, Daub J (2001) Molecular switching in the near infrared (NIR) with a functionalized boron–dipyrromethene dye. Angew Chem Int Ed 40:385–387 Jacquemin D, Chibani S, Le Guennic B, Mennucci B (2014) Solvent effects on cyanine derivatives: a PCM investigation. J Phys Chem A 118:5343–5348