Calculation of the spheroidal functions of the first kind for complex values of the argument and parameters
Tóm tắt
Methods are proposed, first, for calculating (in a given domain of complex plane) the eigenvalues of the spheroidal wave equation with complex-valued parameters and, second, for calculating the values of the corresponding functions for complex values of the argument.
Tài liệu tham khảo
I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976) [in Russian].
L.-W. Li, M.-S. Leong, T.-S. Yeo, P.-S. Kooi, and K.-Y. Tan, “Computations of spheroidal harmonics with complex arguments: A review with an algorithm,” Phys. Rev. E 58(5), 6792–6806 (1998).
P. Falloon, Ph.D. Thesis (University of Western Australia, 2001).
P. E. Falloon, P. C. Abbott, and J. B. Wang, Theory and computation of the spheroidal wave functions (School of Physics, Univ. of Western Australia, 2002); http://arxiv.org/ftp/math-ph/papers/0212/0212051.pdf.
S. L. Skorokhodov and D. V. Khristoforov, “Calculation of the branch points of the eigenfunctions corresponding to wave spheroidal functions,” Comput. Math. Math. Phys. 46(7), 1132–1146 (2006).
Higher Transcendental Functions (Bateman Manuscript Project), Ed. by A. Erdelyi (McGraw-Hill, New York, 1953, 1953, 1955; Nauka, Moscow, 1965, 1966, 1967), Vols. 1–3.
A. A. Abramov and S. V. Kurochkin, “Highly accurate calculation of angular spheroidal functions,” Comput. Math. Math. Phys. 46(1), 10–15 (2006).
M. A. Lavren’tev and B. V. Shabat, Methods of the Theory of Functions of Complex Variable (Nauka, Moscow, 1987) [in Russian].