Tính Toán Chuyển Giao Nhiệt Giữa Hình Cầu và Hình Nón Trong Dòng Chảy Tốc Độ Cao Thông Qua Phần Mềm Thương Mại

V. K. Batygina1,2
1Moscow Institute of Thermal Technology, Moscow, Russia
2Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Chúng tôi trình bày một cái nhìn tổng quan ngắn gọn về các mô hình độ nhiễu loạn phổ biến nhất và các kết quả xác thực có sẵn cho chúng. Dòng chảy tốc độ cao xung quanh hình nón cầu bị bo tròn được mô phỏng bằng cách sử dụng nhiều phần mềm thương mại khác nhau. Các thiết lập vấn đề trong các hệ thống phần mềm khác nhau được thực hiện sao cho gần gũi với nhau nhất có thể. Các giá trị số của mật độ dòng nhiệt trên bề mặt hình nón được so sánh với dữ liệu thực nghiệm. Chúng tôi minh chứng ảnh hưởng của độ nhiễu loạn có mặt trong phép tính đến giá trị mật độ dòng nhiệt trên bề mặt.

Từ khóa

#tính toán #chuyển giao nhiệt #dòng chảy tốc độ cao #mô hình độ nhiễu loạn #phần mềm thương mại

Tài liệu tham khảo

Roy, C.J. and Blottner, F.G., Review and assessment of turbulence models for hypersonic flows, Progr. Aerospace Sci., 2006, vol. 42, pp. 469–530. https://doi.org/10.1016/j.paerosci.2006.12.002 Spalart, P.R. and Allmaras, S.R., A one-equation turbulence model for aerodynamic flows, Proc. 30th AIAA Aerospace Sci. Meeting and Exhibition, Reno, NV, Jan. 6–9, 1992, AIAA paper no. 92-0439. https://doi.org/10.2514/6.1992-439 Spalart, P.R. and Allmaras, S.R., A one-equation turbulence model for aerodynamic flows, Rech. Aerospace, 1994, no. 1, pp. 5–21. Coleman, G.T. and Stollery, J.L., Heat transfer from hypersonic turbulent flow at a wedge compression corner, J. Fluid Mech., 1972, vol. 56, pp. 741–752. https://doi.org/10.1017/S0022112072002630 Coleman, G.T., Hypersonic turbulent boundary layer studies, PhD Thesis, London: Univ. of London, Department of Aeronautics, 1973. Elfstrom, G.M., Turbulent hypersonic flow at a wedge compression corner, J. Fluid Mech., 1972, vol. 53, no. 1, pp. 113–127. https://doi.org/10.1017/S0022112072000060 Kussoy, M.I. and Horstman, C.C., Documentation of two- and three-dimensional hypersonic shock wave/turbulent boundary layer interaction flows, NASA report no. TM 101075, 1989. Goldberg, U., Hypersonic flow heat transfer prediction using single equation turbulence models, ASME J. Heat Transfer, 2001, vol. 123, pp. 65–69. https://doi.org/10.1115/1.1337653 Goldberg, U., Batten, P., Palaniswamy, S., Chakravarthy, S., and Peroomian, O., Hypersonic flow predictions using linear and nonlinear turbulence closures, J. Aircraft, 2000, vol. 37, no. 4, pp. 671–675. https://doi.org/10.2514/2.2650 Menter, F.R., Eddy viscosity transport equations and their relation to the k–ε model, Trans. ASME J. Fluids Eng., 1997, vol. 119, no. 4, pp. 876–884. https://doi.org/10.1115/1.2819511 Jones, W.L. and Launder, B.E., The prediction of laminarization with a two-equation model of turbulence, Int. J. Heat Mass Transfer, 1972, vol. 15, pp. 301–314. https://doi.org/10.1016/0017-9310(72)90076-2 Launder, B.E., Sharma, B.I., and Holden, M.S., Studies of the mean and unsteady structure of turbulent boundary layer separation in hypersonic flow, Proc. 22nd Fluid Dynamics, Plasma Dynamics and Lasers Conf., Honolulu, 1991, AIAA paper no. 1991–1778. Kussoy, M.I. and Horstman, C.C., An experimental documentation of a hypersonic shock-wave turbulent boundary layer interaction flow-with and without separation, NASA report no. TM X-62412, 1975. Marvin, J.G., Horstman, C.C., Rubesin, M.W., Coakley, T.J., and Kussoy, M.I., An experimental and numerical investigation of shock-wave induced turbulent boundary-layer separational hypersonic speeds, AGARDograph-CPP-168, 1975. Mikulla, V. and Horstman, C.C., Turbulence measurements in hypersonic shock-wave boundary-layer interaction flows, AIAA J., 1976, vol. 14, no. 5, pp. 568–575. https://doi.org/10.2514/3.7127 Kussoy, M.I. and Horstman, C.C., Documentation of two- and three dimensional shock wave/turbulent boundary layer interaction flows at Mach 8.2, NASA report no. TM 103838, 1991. Schulein, E., Krogmann, P., and Stanewsky, E., Documentation of two-dimensional impinging shock/turbulent boundary layer interaction flow, DLR Report no. IB 223-96 A 49, Gottingen, 1996. Schulein, E., Personal communications, May 23, 2006 and Oct. 30, 2006. Rodi, W., Experience with two-layer models combining the k–ε model with a one-equation model near the wall, Proc. 29th Aerospace Sciences Meeting, Reno, NV, 1991, AIAA paper no. 1991–0216. https://doi.org/10.2514/6.1991-216 Launder, B.E. and Sharma, B.I., Application of the energy dissipation model of turbulence to the calculation of flow near a spinning disk, Lett. Heat Mass Transfer, 1974, vol. 1, no. 2, pp. 131–138. https://doi.org/10.1016/0094-4548(74)90150-7 So, R.M., Zhang, H.S., and Speziale, C.G., Near-wall modeling of the dissipation rate equation, AIAA J., 1991, vol. 29, no. 12, pp. 2069–2076. https://doi.org/10.2514/3.10843 Zhang, H.S., So, R.M., Speziale, C.G., and Lai, Y.G., Near wall two-equation model for compressible turbulent flows, AIAA J., 1993, vol. 31, pp. 196–199. https://doi.org/10.2514/3.11338 Coakley, T.J. and Huang, P.G., Turbulence modeling for high-speed flows, Proc. 30th Aerospace Sci. Meeting and Exhibition, Reno, NV, 1992, AIAA paper no. 92-0436. https://doi.org/10.2514/6.1992-436 Wilcox, D.C., Turbulence Modeling for CFD, 1st ed., LaCanada, CA: DCW Industries Inc., 1988. Wilcox, D.C., Turbulence Modeling for CFD, 2nd ed., LaCanada, CA: DCW Industries Inc., 1998. Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 1994, vol. 32, no. 8, pp. 1598–1605. https://doi.org/10.2514/3.12149 Smith, B.R., Prediction of hypersonic shock-wave/turbulent boundary-layer interactions, J. Spacecraft Rockets, 1996, vol. 33, no. 5, pp. 614–619. Smith, B.R., A near wall model for the k–l two equation turbulence model, Proc. Fluid Dynamics Conf., Colorado Springs, 1994, AIAA paper no. 1994-2386. https://doi.org/10.2514/6.1994-2386 Robinson, D.F., Harris, J.E., and Hassan, H.A., Unified turbulence closure model for axisymmetric and planar free shear flows, AIAA J., 1995, vol. 33, no. 12, pp. 2324–2331. https://doi.org/10.2514/3.12987 Robinson, D.F. and Hassan, H.A., Further development of the k–ζ (enstrophy) turbulence closure model, AIAA J., 1998, vol. 36, no. 10, pp. 1825–1833. https://doi.org/10.2514/2.298 Coakley, T.J., Turbulence modeling methods for the compressible Navier–Stokes equations, Proc. 16th Fluid and Plasmadynamics Conf., Danvers, MA, 1983, AIAA paper no. 1983-1693. https://doi.org/10.2514/6.1983-1693 Shirazi, S.A. and Truman, C.R., Evaluation of algebraic turbulence models for PNS predictions of supersonic flow past a sphere-cone, AIAA J., 1989, vol. 27, no. 5, pp. 560–568. https://doi.org/10.2514/3.10146 Ausherman, D.W., Yanta, W.J., and Rutledge, W.H., Measurements of the three-dimensional boundary layers on conical bodies at Mach 3 and Mach 5, Proc. 16th Fluid and Plasmadynamics Conf., Danvers, MA, 1983, AIAA paper no. 83-1675. https://doi.org/10.2514/6.1983-1675 Widhopf, G.F. and Hall, R., Transitional and turbulent heat-transfer measurements on a yawed blunt conical nosetip, AIAA J., 1972, vol. 10, pp. 1318–1325. https://doi.org/10.2514/6.1972-212 Carver, D.B., Heat transfer, surface pressure and flow field surveys on conic and biconic models with boundary layer trips at Mach 8 – Phases IV and V, Calspan/AEDC Div., report no. AEDCTSR-80-V14, 1980. ANSYS Inc., ANSYS CFX-Solver Theory Guide, Dec. 2006. ANSYS Inc., ANSYS Fluent Theory Guide, Nov. 2013. Mentor Graphics Corporation, FloEFD Technical Reference, Software Version 17. Surzhikov, S.T., Numerical interpretation of experimental data on aerodynamics of the HB-2 model using computer codes USTFEN and PERAT-3D, Fiz.-Khim. Kinet. Gaz. Din., 2020, vol. 21, no. 1. http://chemphys.edu.ru/issues/2020-21-1/articles/900/. https://doi.org/10.33257/PhChGD.21.1.900 Ermakov, M.K. and Kryukov, I.A., Verification and validation of aerodynamic calculation complexes by the example of the problem on flow around sharp and blunt cones, Fiz.-Khim. Kinet. Gaz. Din., 2021, vol. 22, no. 4. http://chemphys.edu.ru/issues/2021-22-4/articles/944/. https://doi.org/10.33257/PhChGD.22.4.944