Calculation of scattering characteristics of aerial radar objects of resonant sizes based on iterative algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
G. C. Gaunaurd, H. Uberall, A. Nagl, “Complex-frequency poles and creeping-wave transients in electromagnetic-wave scattering,” Proc. IEEE 71, No. 1, 172 (Jan. 1983). DOI: 10.1109/PROC.1983.12538.
A. A. Kostylev, “Identification of radar targets using ultrawideband signals: methods and applications,” Zarubezhnaya Radioelektronika, No. 4, 75 (1984).
C. Uluisik, G. Cakir, M. Cakir, L. Sevgi, “Radar cross section (RCS) modeling and simulation, Part 1: A tutorial review of definitions, strategies, and canonical examples,” IEEE Antennas Propag. Magazine 50, No. 1, 115 (Feb. 2008). DOI: 10.1109/MAP.2008.4494511.
G. Cakir, M. Cakir, L. Sevgi, “Radar cross section (RCS) modeling and simulation, Part 2: A novel FDTD-based RCS prediction virtual tool for the resonance regime,” IEEE Antennas Propag. Magazine 50, No. 2, 81 (Apr. 2008). DOI: 10.1109/MAP.2008.4562259.
A. P. Peterson, S. L. Ray, R. Mittra, Computational Methods for Electromagnetics (Wiley-IEEE Press, 1997).
E. N. Vasil’ev, Excitation of Bodies of Revolution (Radio i Svyaz’, Moscow, 1987) [in Russian].
L. A. L’vova, Radar Signature of Aircraft (RFYaTs-VNIITF, Snezhinsk, 2003) [in Russian].
J. M. Rius, E. Ubeda, J. Parron, “On the testing of the magnetic field integral equation with RWG basis functions in method of moments,” IEEE Trans. Antennas Propag. 49, No. 11, 1550 (Nov. 2001). DOI: 10.1109/8.964090.
L. Gurel, O. Ergul, “Singularity of the magnetic field integral equation and its extraction,” IEEE Antennas Wireless Propag. Lett. 4, 229 (2005). DOI: 10.1109/LAWP.2005.851103.
Ozgur Ergul, Levent Gurel, “Linear-linear basis functions for MLFMA solutions of magnetic-field and combined-field integral equations,” IEEE Trans. Antennas Propag. 55, No. 4, 1103 (Apr. 2007). DOI: 10.1109/TAP.2007.893393.
T. F. Eibert, “Some scattering results computed by surface-integral-equation and hybrid finite-element — boundary-integral techniques, accelerated by the multilevel fast multipole method,” IEEE Antennas Propag. Magazine 49, No. 2, 61 (Apr. 2007). DOI: 10.1109/MAP.2007.376638.
W. C. Gibson, The Method of Moments in Electromagnetics (Chapman & Hall/Taylor & Francis Group, Boca-Raton-London-New York, 2008). DOI: 10.1080/00107510903073302.
Pasi Yla-Oijala, Matti Taskinen, Seppo Jarvenpaa, “Advanced surface integral equation methods in computational electromagnetics,” in Proc. of Int. Conf. on Electromagnetics in Advanced Applications, ICEAA’09, 14–18 Sept. 2009, Torino, Italy (COREP, Torino, 2009), pp. 369–372. DOI: 10.1109/ICEAA.2009.5297415.
I. O. Sukharevsky, G. S. Zalevsky, S. V. Nechitaylo, O. I. Sukharevsky, “Electromagnetic wave scattering by a circular PEC plate of finite thickness,” Elektomagnitnye Volny i Elektronnye Sistemy 15, No. 2, 42 (2010).
O. I. Sukharevsky, G. S. Zalevsky, S. V. Nechitaylo, I. O. Sukharevsky, “Simulation of scattering characteristics of aerial resonant-size objects in the VHF band,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 53(4), 51 (2010), http://radio.kpi.ua/article/view/S0021347010040060 [Radioelectron. Commun. Syst. 53(4), 213 (2010)], DOI: 10.3103/S0735272710040060.
E. Ubeda, J. M. Tamayo, J. M. Rius, “Taylor-orthogonal basis functions for the discretization in method of moments of second kind integral equations in the scattering analysis of perfectly conducting or dielectric objects,” PIER 119, 85 (2011). DOI: 10.2528/PIER11051715.
Su Yan, Jian-Ming Jin, Zaiping Nie, “Improving the accuracy of the second-kind Fredholm integral equations by using the Buffa-Christiansen functions,” IEEE Trans. Antennas Propag. 59, No. 4, 1299 (Apr. 2011). DOI: 10.1109/TAP.2011.2109364.
Eduard Ubeda, J. M. Tamayo, J. M. Rius, A. Heldring, “Stable discretization of the electric-magnetic field integral equation with the Taylor-orthogonal basis functions,” IEEE Trans. Antennas Propag. 61, No. 3, 1484 (Mar. 2013). DOI: 10.1109/TAP.2012.2227925.
G. S. Zalevsky, O. I. Sukharevsky, “Secondary emission characteristics of resonant perfectly conducting objects of simple shape,” in Proc. of IX Int. Conf. on Antenna Theory and Techniques, ICATT’13, 16–20 Sept. 2013, Odessa, Ukraine (Odessa, 2013), pp. 145–147. DOI: 10.1109/ICATT.2013.6650706.
FEKO Comprehensive Electromagnetic Solutions. The Complete Antenna Design and Placement Solution, http://www.feko.info .
E. F. Knott, J. F. Shaeffer, M. T. Tuley, Radar Cross Section, 2nd ed. (Artech House, Boston-London, 1993).
Ya. D. Shirman et. al. (ed.), Computer Simulation of Aerial Target Radar Scattering Recognition, Detection and Tracking (Artech House, Norwood, M.A., 2002).
P. Ya. Ufimtsev, The Theory of Diffraction Edge Waves in Electrodynamics (Binom, Moscow, 2007) [in Russian].
O. I. Sukharevsky, V. A. Vasilets, S. V. Kukobko, et al., Scattering of Electromagnetic Waves by Aerial and Ground-Based Radar Objects: Monograph (KhUPS, Kharkiv, 2009) [in Russian, ed. by O. I. Sukharevsky].
I. M. Sobol’, Multivariate Quadratic Formulas and Haara Functions (Nauka, Moscow, 1969) [in Russian].
Aviation Encyclopaedia “Sky Corner”. AGM-86C/D-CALCM, http://www.airwar.ru/weapon/kr/agm86.html [in Russian].
Taurus KEPD 350. The modular stand-off missile for precision strike against HDBT, http://www.taurus-systems.de .