Calculation of electron transport in branched semiconductor nanostructures using quantum network model

Applied Physics A Solids and Surfaces - Tập 128 - Trang 1-29 - 2021
D. E. Tsurikov1
1Spin Optics Laboratory, St. Petersburg State University, Petersburg, Russia

Tóm tắt

Electron transport in branched semiconductor nanostructures provides many possibilities for creating fundamentally new devices. We solve the problem of its calculation using a quantum network model. The proposed scheme consists of three computational parts: S-matrix of the network junction, S-matrix of the network in terms of its junctions’ S-matrices, electric currents through the network based on its S-matrix. To calculate the S-matrix of the network junction, we propose scattering boundary conditions in a clear integro-differential form. As an alternative, we also consider the Dirichlet-to-Neumann and Neumann-to-Dirichlet map methods. To calculate the S-matrix of the network in terms of its junctions’ S-matrices, we obtain a network combining formula. We find electrical currents through the network in the framework of the Landauer–Büttiker formalism. Everywhere for calculations, we use extended scattering matrices, which allows taking into account correctly the contribution of tunnel effects between junctions. We demonstrate the proposed calculation scheme by modeling nanostructure based on two-dimensional electron gas. For this purpose we offer a model of a network formed by smooth junctions with one, two and three adjacent branches. We calculate the electrical properties of such a network (by the example of GaAs), formed by four junctions, depending on the temperature.

Tài liệu tham khảo

H.Q. Xu, Electrical properties of three-terminal ballistic junctions. Appl. Phys. Lett. 78(14), 2064–2066 (2001) I. Shorubalko, H.Q. Xu, I. Maximov, P. Omling, L. Samuelson, W. Seifert, Nonlinear operation of GaInAs/InP-based three-terminal ballistic junctions. Appl. Phys. Lett. 79(9), 1384–1386 (2001) H.Q. Xu, I. Shorubalko, I. Maximov, W. Seifert, P. Omling, L. Samuelson, A novel device principle for nanoelectronics. Mater. Sci. Eng. C 19, 417–420 (2002) D. Csontos, H.Q. Xu, Quantum effects in the transport properties of nanoelectronic three-terminal Y-junction devices. Phys. Rev. B 67(23), 235322 (2003) D. Wallin, I. Shorubalko, H.Q. Xu, A. Cappy, Nonlinear electrical properties of three-terminal junctions. Appl. Phys. Lett. 89(9), 092124 (2006) H. Irie, Q. Diduck, M. Margala, R. Sobolewski, M.J. Feldman, Nonlinear characteristics of T-branch junctions: transition from ballistic to diffusive regime. Appl. Phys. Lett. 93(5), 053502 (2008) F. Meng, J. Sun, M. Graczyk, K. Zhang, M. Prunnila, J. Ahopelto, P. Shi, J. Chu, I. Maximov, H.Q. Xu, Nonlinear electrical properties of Si three-terminal junction devices. Appl. Phys. Lett. 97(24), 242106 (2010) T. Palm, L. Thylén, O. Nilsson, C. Svensson, Quantum interference devices and field-effect transistors: a switch energy comparison. J. Appl. Phys. 74(1), 687–694 (1993) E. Forsberg, J.O.J. Wesström, Self-consistent simulations of mesoscopic devices operating under a finite bias. Solid-State Electron. 48(7), 1147–1154 (2004) G.M. Jones, C.H. Yang, Quantum steering of electron wave function in an InAs Y-branch switch. Appl. Phys. Lett. 86(7), 0731173 (2005) D. Hartmann, L. Worschech, S. Hofling, A. Forchel, J.P. Reithmaier, Self-gating in an electron Y-branch switch at room temperature. Appl. Phys. Lett. 89(12), 122109 (2006) E. Forsberg, Reversible logic based on electron waveguide Y-branch switches. Nanotechnology 15(4), S298–S302 (2004) H.Q. Xu, I. Shorubalko, D. Wallin, I. Maximov, P. Omling, L. Samuelson, W. Seifert, Novel nanoelectronic triodes and logic devices with TBJs. IEEE Electron Device Lett. 25(4), 164–166 (2004) D. Wallin, H.Q. Xu, Electrical properties and logic function of multibranch junction structures. Appl. Phys. Lett. 86(25), 253510 (2005) A.B. Mikhailova, B.S. Pavlov, L.V. Prokhorov, Intermediate hamiltonian via Glazman’s splitting and analytic perturbation for meromorphic matrix-functions. Math. Nachr. 280(12), 1376–1416 (2007) B. Pavlov, A solvable model for scattering on a junction and modified analytical perturbation procedure. Oper. Theory. Adv. Appl. 197, 281–336 (2009) S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1999) G.B. Lesovik, I.A. Sadovskyy, Scattering matrix approach to the description of quantum electron transport. Phys.-Uspekhi 54(10), 1007–1059 (2011) C. Berthod, F. Gagel, K. Maschke, Dc transport in perturbed multichannel quantum wires. Phys. Rev. B 50(24), 18299–18311 (1994) H. Mizuta, Three-dimensional scattering matrix simulation of resonant tunnelling via quasi-bound states in vertical quantum dots. Microelectron. J. 30(10), 1007–1017 (1999) F.O. Heinz, A. Schenk, Self-consistent modeling of longitudinal quantum effects in nanoscale double-gate metal oxide semiconductor field effect transistors. J. Appl. Phys. 100(8), 084314 (2006) A. Adamyan, B. Pavlov, A. Yafyasov, Modified Krein formula and analytic perturbation procedure for scattering on arbitrary junction. Oper. Theory: Adv. Appl. 190, 3–26 (2009) N.T. Bagraev, A.B. Mikhailova, B.S. Pavlov, L.V. Prokhorov, A.M. Yafyasov, Parameter regime of the resonance quantum switch. Phys. Rev. 71, 165308 (2005) U. Wulf, J. Kucera, P.N. Racec, E. Sigmund, Transport through quantum systems in the R-matrix formalism. Phys. Rev. B 58(24), 16209–16220 (1998) P.N. Racec, E.R. Racec, H. Neidhardt, R-matrix formalism for electron scattering in two dimensions with applications to nanostructures with quantum dots, in Trends in nanophysics, engineering materials. (Springer-Verlag, Berlin Heidelberg, 2010), pp. 149–174 L. Smrčka, R-matrix and the coherent transport in mesoscopic systems. Superlattices Microstruct. 8(2), 221–224 (1990) P.A. Mello, N. Kumar, Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations (Oxford University Press, Oxford, 2004) A.A. Fraenkel, Y. Bar-Hillel, A. Levy, Foundations of set theory, Elsevier Studies in Logic 67, 2nd (1973). (revised edn) R.L. Graham, D.E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science, 2nd edn. (Addison-Wesley, New York, 1994) M. Levinshtein, S. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters, vol. 2 (World Scientific, Singapore-New Jersey-London-Hong Kong, 1999) S.B. Sett, C. Bose, Field emission from finite barrier quantum structures. Phys. B 450, 162–166 (2014) Hatano, N.: Distribution of resonant eigenvalues of quantum potential scattering. e-print arXiv:0909.2463v1 [quant-ph] (2009)