Calculation of Parameters for Manufacturing the Bearing Surfaces by Pressurization

Russian Aeronautics - Tập 63 - Trang 177-186 - 2020
R. Sh. Gimadiev1, V. I. Khaliulin2, N. V. Levshonkov2
1Kazan State Power Engineering University, Kazan, Russia
2Tupolev Kazan National Research Technical University, Kazan, Russia

Tóm tắt

The statement and the technique of solving a new class of problems for calculating the process parameters of the manufacture of inflatable bearing surfaces of aircraft are proposed. The technique development is based on dependencies of interaction dynamics of the stretchable fabric with internal pressure in the wing cavity. The model takes into account the imbalance of the pressure and tension forces in the shell surface that initiate its high-frequency oscillation. The algorithms obtained allow predicting and then correcting the shape of the wing profile in accordance with the aerodynamics guidelines.

Tài liệu tham khảo

Ruzhitskii, E.I., Sovremennaya aviatsiya: Amerikanskie samolety vertikal’nogo vzleta i posadki (Modern Aviation: The American Vertical Takeoff and Landing Aircraft), Moscow: Astrel’, 2000. Ruzhitskii, E.I., Vertolety (Helicopters), Moscow: Viktoriya, AST, 1997 Pavlov, V.A., Privalov, L.V., and Rybakov, A.V., RU Patent 2005655, Byul. Izobr., 1994. Pavlov, V.A. and Pavlov, V.V., Pavlov's Disk Wings, Tekhnika – Molodezhi, 2004, no. 4, pp. 28–29. Inflatoplane, URL:http://www.airwar.ru/enc/xplane/inflatoplane.html. Simpson, A.D., Design and Evaluation of Inflatable Wings for UAVs, Doctoral Dissertation, University of Kentucky, 2008, URL: https://uknowledge.uky.edu/gradschool_diss/589. Pavlov, V.V., Letatel’nye apparaty s preobrazuemym v nesushchii vint krylom (Aircraft with a Convertible Wing), Kazan: Izd. KNITU-KAI, 2019. Ortamevzi, G. and Zinchenko, D.N., Research of Aerodynamic Characteristics of Hybrid Wing, Mekhanika Giroskopichnikh Sistem, 2014, no. 28, pp. 131–139. Folkersma, M., Schmehl, R., and Viré, A., Boundary Layer Transition Modeling on Leading Edge Inflatable Kite Airfoils, Wind Energy, 2019, vol. 22, issue 7, pp. 908–921. Ortamevzi, G. and Zinchenko, D.N., Aerodynamic Characteristics of the Experimental Flying Model with a Hybrid Soft Skin Surface, Mekhanika Giroskopichnikh Sistem, 2015, no. 29, pp. 53–63. Liu, L., Wang, D., and Yang, H., Study on Modal Properties of Flexible Inflatable Wing Skin Film Structure, Journal of Physics: Conference Series, 2018, vol. 1053, article no. 012041. Liu, L., Hu, F., Jiang, Zh., Liu, T., and Xu, Y., Study on Influence of Ambient Temperature on Biaxial Stress and Strength of Flexible Inflatable Wing Film, Results in Physics, 2019, vol. 12, pp. 85–93. Konyukhov, A.V. and Konoplev, Yu.G., Thermohyperelasticity Model and Its Application to the Study of Inflated Plate Instability. II, Izv. Vuz. Av. Tekhnika, 2006, no. 4, pp. 7–13 [Russian Aeronautics (Engl. Transl.), 2006, vol. 49, no. 4]. Gimadiev, R.Sh. and Dribnoi, V.I., Soft Wing Interaction with Incompressible Fluid Flow, Trudy seminara Kazanskogo fiz.-tekhn. instituta Kazanskogo filiala AN SSSR (Proc. of the Workshop of Kazan Institute of Physics and Technics, Kazan Branch of Science Academy of USSR), Kazan, 1981, no. 14, pp. 163-169. Gimadiev, R.Sh. and Il’gamov, M.A., Continuous Potential Flow around the Soft Wing, Trudy seminara Kazanskogo fiz.-tekhn. instituta Kazanskogo filiala AN SSSR “Gidrouprugost’ obolochek” (Proc. of the Workshop of Kazan Institute of Physics and Technics, Kazan Branch of Science Academy of USSR “Hydroelasticity of Shells”), Kazan, 1983, no. 16, pp. 43–52. Gimadiev, R.Sh. and Il’gamov, M.A., Static Interaction of a Soft Wing Profile with Incompressible Fluid Flow, Izv. Vuz. Av. Tekhnika, 1998, no. 1, pp. 43–48 [Russian Aeronautics (Engl. Transl.), vol. 41, no. 1, pp. 38–43]. Bondar’, V.S., Abashev, D.R., and Petrov, V.K., Plasticity of Materials under Proportional and Nonproportional Cyclic Loading, Vestnik PNIPU. Mekhanika, 2017, no. 3, pp. 53–74. Bondar’, V.S., Danshin, V.V., and Alkhimov, D.A., Analysis on Cyclic Deformation and Low-High-Cycle Fatigue in Uniaxial Stress State, Vestnik PNIPU. Mekhanika, 2016, no. 4, pp. 52–71. Gilev, V.G., Rusakov, S.V., Pestrenin, V.M., and Pestrenina, I.V., Estimation of the Cylindrical Composite Shell Stiffness at the Initial Stage of Curing During Deployment by Internal Pressure, Vestnik PNIPU. Mekhanika, 2018, no. 1, pp. 93–99. Pestrenin, V.M., Pestrenina, I.V., Rusakov, S.V., Kondyurin, A.V., and Korepanova, A.V., Packaging and Deployment of Large Shell Structures by Internal Pressure Loading, Vestnik PNIPU. Mekhanika, 2016, no. 4, pp. 303–316. Pestrenin, V.M., Pestrenina, I.V., Rusakov, S.V., and Kondyurin, A.V., Packaging and Deployment of Large Shell Composite Structures by Internal Pressure Loading in Space, Aerokosmicheskaya Tekhnika, Vysokie Tekhnologii i Innovatsii, 2016, vol. 1, pp. 261-264. Badriev, I.B., Makarov, M.V., and Paimushin, V.N., Numerical Investigation of a Physically Nonlinear Problem of Longitudinal Bending of Sandwich Plate with Transversal-Soft Core, Vestnik PNIPU. Mekhanika, 2017, no. 1, pp. 39–51. Baryshev, A.A., Lychev, S.A., and Manzhirov, A.V., The Equilibrium Equations of Shells in the Coordinates of the General Form, Izvestiya Saratovskogo Universiteta. Novaya seriya. Seriya: Matematika. Mekhanika. Informatika, 2013, vol. 13, no. 2-1, pp. 44-53. Lychev, S.A. and Baryshev, A.A., Equilibrium Equations for Material Uniform and Inhomogeneous Laminated Shells, Vestnik PNIPU. Mekhanika, 2012, no. 4, pp. 42–65. Gimadiev, R.Sh., Gimadieva, T.Z., and Paimushin, V.N., The Dynamic Process of the Inflation of Thin Elastomeric Shells under the Action of an Excess Pressure, Prikladnaya Matematika i Mekhanika, 2014, vol. 78, issue 2, pp. 236–248 [J. of Applied Mathematics and Mechanics (Engl. Transl.), vol. 78, issue 2, pp. 163–171]. Gimadiev, R.Sh., About the Issue of Soft Shell Filling Dynamics, in Modelirovanie dinamicheskikh protsessov v sploshnykh sredakh (Modeling of Dynamic Processes in Continuous Media), Kazan: Institut Mekhaniki i Mashinostroeniya KazNTs RAN, 1997, pp. 81-87. Gimadiev, R.Sh., Numerical Simulation of Soft Two-Shell Wing Deployment, Vychislitel’nye Tekhnologii, 1995, vol. 4, no. 11, pp. 51-59. Gimadiev, R.Sh., Braking of a Body by a Soft Inflatable Shell on Impact on a Surface, Izvestiya RAN. Mekhanika Tverdogo Tela, 2017, no. 5, pp. 109-121. Morozov, V.I., Ponomarev, A.T., and Rysev, O.V., Matematicheskoe modelirovanie slozhnyh aerouprugih system (Mathematical Simulation of Complex Aeroelastic Systems), Moscow: Fizmatlit, 1995. Giniyatullin, A.G. and Gimadiev, R.Sh., Examining Balloon Catheters Sheath Filling in Inflation, Meditsinskaya Tekhnika, 1993, issue 2, pp. 30-33. Gimadiev, R.Sh., Mathematical Modeling of Soft Wing Shape and Layout, Izv. Vuz. Av. Tekhnika, 1997, no. 3, pp. 79-83 [Russian Aeronautics (Engl. Transl.), 1997, vol. 40, no. 3, pp. 76–81]. Ridel’, V.V., and Gulin, B.V., Dinamika myagkikh obolochek (Dynamics of Soft Shells), Moscow: Nauka, 1990. Il’gamov, M.A., Vvedenie v nelineinuyu gidrouprugost’ (Introduction to Nonlinear Hydroelasticity), Moscow: Nauka, 1991. Gimadiev, R.Sh., Dinamika myagkikh obolochek parashyutnogo tipa (Dynamics of Soft Parachute-Type Shells), Kazan: KGEU, 2006. Antuf’ev, B.A., Dynamics of a Discretely Reinforced Cylindrical Shell under Live Load, Izv. Vuz. Av. Tekhnika, 2016, no. 3, pp. 8-12 [Russian Aeronautics (Engl. Transl.), 2016, vol. 59, no. 3, pp. 303-307]. Iskenderov, R.A., and Amirova, R.A., Investigation of the Influence of Preliminary Buckling for a Reinforced Medium-Filled Cylindrical Shell on Critical Stresses of Overall Instability, Izv. Vuz. Av. Tekhnika, 2010, no. 4, pp. 67-69 [Russian Aeronautics (Engl. Transl.), 2010, vol. 53, no. 4, pp. 470-474]. Zheleznov, L.P., Kabanov, V.V., and Boiko, D.V., Nonlinear Deformation and Stability of Discrete-Reinforced Elliptical Cylindrical Composite Shells under Torsion and Internal Pressure, Izv. Vuz. Av. Tekhnika, 2018, no. 2, pp. 27-34 [Russian Aeronautics (Engl. Transl.), 2018, vol. 61, no. 2, pp. 175-182]. Dzhabrailov, A.Sh., Klochkov, Yu.V., Nikolaev, A.P., and Fomin, S.D., Analysis of Stresses in Branched Shells of Revolution with Joint Zones Using Triangular Finite Elements with Allowance for Elastoplastic Deformation, Izv. Vuz. Av. Tekhnika, 2015, no. 1, pp. 8-13 [Russian Aeronautics (Engl. Transl.), 2015, vol. 58, no. 1, pp. 7-14]. Zheleznov, L.P., Kabanov, V.V., and Boiko, D.V., Nonlinear Deformation and Stability of Discretely Reinforced Elliptical Cylindrical Shells under Transverse Bending and Internal Pressure, Izv. Vuz. Av. Tekhnika, 2014, no. 2, pp. 8-13 [Russian Aeronautics (Engl. Transl.), 2014, vol. 57, no. 2, pp. 118-126]. Abdyushev, A.A., The Principle of Constructing a Computation Model of Equilibrium Ribbed Stiffened Shells in Linear Displacement-Based FEM Analysis, Izv. Vuz. Av. Tekhnika, 2013, no. 2, pp. 8-14 [Russian Aeronautics (Engl. Transl.), 2013, vol. 56, no. 2, pp. 111-125]. Zheleznov, L.P., Kabanov, V.V., and Boiko, D.V., Nonlinear Deformation and Stability of Supported Oval Cylindrical Shells under Torsion and Bending with Internal Pressure, Izv. Vuz. Av. Tekhnika, 2010, no. 4, pp. 64-66 [Russian Aeronautics (Engl. Transl.), 2010, vol. 53, no. 4, pp. 466-469].