Calculating the fatigue life of smooth specimens of two-phase titanium alloys subject to symmetric uniaxial cyclic load of constant amplitude

International Journal of Fatigue - Tập 83 - Trang 313-322 - 2016
О.М. Herasymchuk1, O.V. Kononuchenko1, P.E. Markovsky2, V.I. Bondarchuk2
1G.S. Pisarenko Institute for Problems of Strength, National Academy of Sciences of Ukraine, Kyiv, Ukraine
2G. V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Tài liệu tham khảo

Klesnil, 1980 Miller, 1987, The behaviour of short fatigue cracks and their initiation. Part II – General summary, Fatigue Fract Eng Mater Struct, 10, 93, 10.1111/j.1460-2695.1987.tb01153.x Davidson, 1989, Crystallography of fatigue crack initiation in Astrology at ambient temperature, Acta Metall, 37, 1089, 10.1016/0001-6160(89)90105-3 Tanaka, 1981, A dislocation model for fatigue crack initiation, ASME J Appl Mech, 48, 97, 10.1115/1.3157599 Chan, 2003, A microstructure-based fatigue-crack-initiation model, Metall Mater Trans A, 34A, 43, 10.1007/s11661-003-0207-9 Chan, 2010, Roles of microstructure in fatigue crack initiation, Int J Fatigue, 32, 1428, 10.1016/j.ijfatigue.2009.10.005 Miller, 1993, The two thresholds of fatigue behaviour, Fatigue Fract Eng Mater Struct, 16, 931, 10.1111/j.1460-2695.1993.tb00129.x Navarro, 1987, A model for short fatigue crack propagation with an interpretation of the short-long crack, Fatigue Fract Eng Mater Struct, 10, 169, 10.1111/j.1460-2695.1987.tb01158.x Turnbull, 1995, Predicting fatigue life in commercially pure aluminium using a short crack growth model, Fatigue Fract Eng Mater Struct, 18, 1469, 10.1111/j.1460-2695.1995.tb00869.x Andersson, 2005, The influence of grain size variation on metal fatigue, Int J Fatigue, 27, 847, 10.1016/j.ijfatigue.2004.11.007 Park, 2005, A microstructural model for predicting high cycle fatigue life of steels, Int J Fatigue, 27, 1115, 10.1016/j.ijfatigue.2005.01.013 Wilkinson, 2001, Modeling the effects of texture on the statistics of stage I fatigue crack growth, Philos Mag A, 81, 841, 10.1080/01418610108214323 Duder, 2006, Experimental characterization and two-dimensional simulation of short-crack propagation in an austenitic–ferritic duplex steel, Int J Fatigue, 28, 983, 10.1016/j.ijfatigue.2005.07.048 Marines-Garcia, 2007, Fatigue crack growth from small to long cracks in VHCF with surface initiations, Int J Fatigue, 29, 2072, 10.1016/j.ijfatigue.2007.03.015 Herasymchuk, 2015, Microstructurally-dependent model for predicting the kinetics of physically small and long fatigue crack growth, Int J Fatigue, 81, 148, 10.1016/j.ijfatigue.2015.08.002 Troshchenko, 1995, Fatigue strength and cyclic crack resistance of titanium alloy VT3-1 in different structural states. Communication 1. Study procedure and experimental results, Strength Mater, 27, 245, 10.1007/BF02208494 Herasymchuk, 2011, Nonlinear relationship between the fatigue limit and quantitative parameters of material microstructure, Int J Fatigue, 33, 649, 10.1016/j.ijfatigue.2010.11.015 Herasymchuk, 2011, Effect of the microstructure of titanium alloys on the fatigue strength characteristics, Strength Mater, 43, 282, 10.1007/s11223-011-9296-7 Mana, 2012, Study of cyclic strain localization and fatigue crack initiation using FIB technique, Int J Fatigue, 39, 44, 10.1016/j.ijfatigue.2011.05.002 Bache, 2003, A review of dwell sensitive fatigue in titanium alloys: the role of microstructure, texture and operating conditions, Int J Fatigue, 25, 1079, 10.1016/S0142-1123(03)00145-2 Bantounas, 2009, The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti–6Al–4V, Acta Mater, 57, 3584, 10.1016/j.actamat.2009.04.018 Walter, 1997 Irwin, 1957, Analysis of stress and strain near the end of a crack traversing a plate, J Appl Mech, 24, 361, 10.1115/1.4011547 Surech, 1983, Crack deflection implications for the growth of long and short fatigue cracks, Metall Trans, 14A, 1375 Murakami, 1986 Herasymchuk, 2011, A generalized grain-size dependence of the fatigue limit, Strength Mater, 43, 205, 10.1007/s11223-011-9287-8 ASTM. ASTM designation E647–00: standard test method for measurement of fatigue crack growth rates; 2000. British Standard BS 7910. Guide to methods for assessing the acceptability of flaws in metallic structures; 2005. Lutjering, 2003 Bridier, 2005, Analysis of the different slip systems activated by tension in a a/b titanium alloy in relation with local crystallographic orientation, Acta Mater, 53, 555, 10.1016/j.actamat.2004.09.040 Schaef, 2011, A 3-D view on the mechanisms of short fatigue cracks interacting with grain boundaries, Acta Mater, 59, 1849, 10.1016/j.actamat.2010.11.051 Venkatramani, 2007, A size-dependent crystal plasticity finite-element model for creep and load shedding in polycrystalline titanium alloys, Acta Mater, 55, 3971, 10.1016/j.actamat.2007.03.017 Krupp, 2007