Calcium phosphate injection of symptomatic bone marrow lesions of the knee: what is the current clinical evidence?
Tóm tắt
Chronic bone marrow lesions (BML) in the weight-bearing portions of the knee are often associated with symptomatic degenerative arthritis resulting in pain and dysfunction. Injection of bone substitute material like calcium phosphate has been described. Whilst some studies have reported encouraging results others have shown limited benefit of this technique. The aim was to collate the available evidence on the injection of calcium phosphate and systematically evaluate the results to answer the questions encountered in clinical decision making: (1) does it provide effective long-lasting pain relief to avoid further surgical intervention? (2) which factors (patient/surgical) significantly influence the outcome? and (3) does it adversely affect the outcomes of subsequent arthroplasty? A literature search was performed to identify the studies describing the clinical outcomes of calcium phosphate injection for treatment of BML. We evaluated the reported clinical outcomes with respect to pain, function and complications. Isolated case reports and studies with no objective assessment of clinical outcomes were excluded. We noted 46 articles in the current literature of which 8 described clinical outcomes of calcium phosphate injection. Mean (plus/minus SD) score on the visual analog scale (VAS) has been reported to improve from 7.90 (± 0.38) to 2.76 (± 0.90), whereas the International Knee Documentation Committee (IKDC) score improved from 30.5 (SD not reported (NR)) to 53.0 (SD NR). Pre and post procedure Short form survey (SF-12) scores were 29.8 (SD NR) and 36.7 (SD NR), respectively. In one study, scores on the Tegner Lysholm knee scoring scale improved in 12 out of 22 patients, whereas the remainder had no change in symptoms. Extravasation of calcium phosphate into the joint was the most common complication, whereas no adverse effect has been reported on subsequent arthroplasty. Limited data from the published studies would suggest that calcium phosphate injection of BML may potentially improve pain and function. However, no evidence is currently available to clearly identify patient/surgical factors that may influence the long-term outcomes of this procedure. Hence pragmatic, prospective studies with stratified patient cohorts and robust reporting of outcome measures are essential to improve the understanding of the indications and clinical effectiveness of this novel procedure.
Tài liệu tham khảo
Sharkey PF, Cohen SB, Leinberry CF, Parvizi J (2012) Subchondral bone marrow lesions associated with knee osteoarthritis. Am J Orthop 41(9):413–417
Collins JA, Beutel BG, Strauss E, Youm T, Jazrawi L (2016) Bone marrow edema: chronic bone marrow lesions of the knee and the association with osteoarthritis. Bull Hosp Jt Dis (2013) 74(1):24–36
Roemer FW, Neogi T, Nevitt MC, Felson DT, Zhu Y, Zhang Y et al (2010) Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthritis Cartilage 18(1):47 Osteoarthritis Research Society
Felson DT, Chaisson CE, Hill CL et al (2001) The association of bone marrow lesions with pain in knee osteoarthritis. Ann Intern Med 134(7):541–549
Agten CA, Kaplan DJ, Jazrawi LM, Burke CJ (2016) Subchondroplasty: what the radiologist needs to know. AJR Am J Roentgenol 207(6):1257–1262
Roemer FW, Frobell R, Hunter DJ, Crema MD, Fischer W, Bohndorf K et al (2009) MRI-detected subchondral bone marrow signal alterations of the knee joint: terminology, imaging appearance, relevance and radiological differential diagnosis. Osteoarthr Cartil 17(9):1115–1131
Nevalainen MT, Sharkey PF, Cohen SB, Roedl JB, Zoga AC, Morrison WB (2016) MRI findings of subchondroplasty of the knee: a two-case report. Clin Imaging 40(2):241–243
Bonadio MB, Filho AGO, Helito CP, Stump XM, Demange MK (2017) Bone marrow lesion: image, clinical presentation, and treatment. Magn Reson Insights 10:1178623x17703382
Segal NA, Kern A, Anderson DD, Niu J, Lynch J, Guermazi A et al (2012) Elevated tibiofemoral articular contact stress predicts risk for bone marrow lesions and cartilage damage at 30 months. Osteoarthritis Cartilage 20(10):1120–1126 Osteoarthritis Research Society
Cohen SB, Sharkey PF (2012) Surgical treatment of osteoarthritis pain related to subchondral bone defects or bone marrow lesions: subchondroplasty. Tech Knee Surg 11(4):170–175
Cohen SB, Sharkey PF (2016) Subchondroplasty for treating bone marrow lesions. J Knee Surg 29(7):555–563
Bonadio MB, Giglio PN, Helito CP, Pecora JR, Camanho GL, Demange MK (2017) Subchondroplasty for treating bone marrow lesions in the knee - initial experience. Rev Bras Ortop 52(3):325–330
Farr J, Cohen SB (2013) Expanding applications of the subchondroplasty procedure for the treatment of bone marrow lesions observed on magnetic resonance imaging. Oper Tech Sports Med 21(2):138–143
Creations ZK. Subchondroplasty® procedure. 2017. Available from: http://subchondroplasty.com/healthcare-professionals-overview.html. 25 Oct 2107
Abrams GD, Alentorn-Geli E, Harris JD, Cole BJ (2013) Treatment of a lateral tibial plateau osteochondritis dissecans lesion with subchondral injection of calcium phosphate. Arthrosc Tech 2(3):e271–e274
Miller JR, Dunn KW (2015) Subchondroplasty of the ankle: a novel technique. Foot Ankle Online J 8(1):1–7
Chatterjee D, McGee A, Strauss E, Youm T, Jazrawi L (2015) Subchondral calcium phosphate is ineffective for bone marrow edema lesions in adults with advanced osteoarthritis. Clin Orthop Relat Res 473(7):2334–2342
Taylor C, Casagranda, B; Long, J; Akhavan, S editor Abstracts 2017 society of skeletal radiology annual scientific meeting. Skeletal radiology; 2017
Colon DA, Yoon BV, Russell TA, Cammisa FP, Abjornson C (2015) Assessment of the injection behavior of commercially available bone BSMs for Subchondroplasty(R) procedures. Knee 22(6):597–603
Conaway WK, Agrawal R, Nazal MR, Stelzer JW, Martin SD (2019) Changing MRI after subchondroplasty with partial meniscectomy for knee osteoarthritis. Clin Imaging 56:13–16
Byrd JM, Akhavan S, Frank DA (2017) Mid-term outcomes of the subchondroplasty procedure for patients with osteoarthritis and bone marrow edema. Orthop J Sports Med 5(7 suppl6):2325967117S00291
Davis AT, Byrd JM, Zenner JA, Frank DA, DeMeo PJ, Akhavan S (2015) Short-term outcomes of the subchondroplasty procedure for the treatment of bone marrow edema lesions in patients with knee osteoarthritis. Orthop J Sports Med 3(7 suppl2):2325967115S00125
Lo GH, Hunter DJ, Zhang Y, McLennan CE, LaValley MP, Kiel DP et al (2005) Bone marrow lesions in the knee are associated with increased local bone density. Arthritis Rheum 52(9):2814–2821
Korompilias AV, Karantanas AH, Lykissas MG, Beris AE (2008) Transient osteoporosis. J Am Acad Orthop Surg 16(8):480–489
Bartl C, Imhoff A, Bartl R (2012) Treatment of bone marrow edema syndrome with intravenous ibandronate. Arch Orthop Trauma Surg 132(12):1781–1788
Mayerhoefer M, Kramer J, Breitenseher M, Norden C, Vakil-Adli A, Hofmann S et al (2007) Short-term outcome of painful bone marrow oedema of the knee following oral treatment with iloprost or tramadol: results of an exploratory phase II study of 41 patients. Rheumatology 46(9):1460–1465
Meizer R, Radda C, Stolz G, Kotsaris S, Petje G, Krasny C et al (2005) MRI-controlled analysis of 104 patients with painful bone marrow edema in different joint localizations treated with the prostacyclin analogue iloprost. Wien Klin Wochenschr 117(7):278–286
Duany NG, Zywiel MG, McGrath MS, Siddiqui JA, Jones LC, Bonutti PM et al (2010) Joint-preserving surgical treatment of spontaneous osteonecrosis of the knee. Arch Orthop Trauma Surg 130(1):11
Jacobs MA, Loeb PE, Hungerford DS (1989) Core decompression of the distal femur for avascular necrosis of the knee. Bone Joint J 71(4):583–587
Kröner A, Berger C, Kluger R, Oberhauser G, Bock P, Engel A (2007) Influence of high tibial osteotomy on bone marrow edema in the knee. Clin Orthop Relat Res 454:155–162
Kesemenlı CC, Memısoglu K, Muezzınoglu US, Akansel G (2013) Treatment for painful bone marrow edema by open wedge tibial osteotomy. Eur J Orthop Surg Traumatol 23(7):825–829
Yoo JY, O'Malley MJ, Matsen Ko LJ, Cohen SB, Sharkey PF (2016) Knee arthroplasty after subchondroplasty: early results, complications, and technical challenges. J Arthroplast 31(10):2188–2192
Sánchez M, Anitua E, Delgado D, Sanchez P, Prado R, Goiriena JJ et al (2016) A new strategy to tackle severe knee osteoarthritis: combination of intra-articular and intraosseous injections of platelet rich plasma. Expert Opin Biol Ther 16(5):627–643
Tanamas SK, Wluka AE, Pelletier J-P, Pelletier JM, Abram F, Berry PA et al (2010) Bone marrow lesions in people with knee osteoarthritis predict progression of disease and joint replacement: a longitudinal study. Rheumatology 49(12):2413–2419