Calcium chloride effects on salinity-induced oxidative stress, proline metabolism and indole alkaloid accumulation in Catharanthus roseus
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] Hoshida, H.; Tanaka, Y.; Hibino, T.; Hayashi, Y.; Tanaka, A.; Takabe, T. Enhanced tolerance to salt stress in transgenic rice that over expresses chloroplast glutamine synthetase, Plant Mol. Biol., Volume 43 (2000), pp. 103-111
[2] Nemoto, Y.; Sasakuma, T. Differential stress responses of early salt-stress responding genes in common wheat, Phytochemistry, Volume 61 (2002), pp. 129-133
[3] Hasegawa, P.M.; Bressan, R.A.; Zhu, J.K.; Bohnert, H.J. Plant cellular and molecular responses to high salinity, Annu. Rev. Plant Physiol. Plant Mol. Biol., Volume 51 (2000), pp. 463-499
[4] Sankar, B.; Jaleel, C.A.; Manivannan, P.; Kishorekumar, A.; Somasundaram, R.; Panneerselvam, R. Drought induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench, Acta Bot. Croat., Volume 66 (2007), pp. 43-56
[5] Jaleel, C.A.; Gopi, R.; Sankar, B.; Manivannan, P.; Kishorekumar, A.; Sridharan, R.; Panneerselvam, R. Studies on germination, seedling vigour, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress, S. Afr. J. Bot., Volume 73 (2007), pp. 190-195
[6] Manivannan, P.; Jaleel, C.A.; Sankar, B.; Kishorekumar, A.; Somasundaram, R.; Lakshmanan, G.M.A.; Panneerselvam, R. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress (Colloids Surf. B: Biointerfaces, in press, doi:)
[7] Bohnert, H.J.; Jenson, R.J. Strategies for engineering water-stress tolerance in plants, Trends Biotechnol., Volume 14 (1996), pp. 89-97
[8] Irigoyen, J.J.; Emerich, D.W.; Daiz, S. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa plants, Physiol. Plant., Volume 84 (1992), pp. 55-60
[9] Boggess, S.P.; Stewart, G.R.; Aspinall, D.; Paleg, L.G. Effect of water stress on proline synthesis from radioactive precursors, Plant Physiol., Volume 58 (1976), pp. 398-401
[10] Mittler, R. Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., Volume 7 (2002), pp. 405-410
[11] Neill, S.; Desikan, R.; Clarke, A.; Hurst, R.D.; Hancock, J.T. Hydrogen peroxide and nitric oxide as signaling molecules in plants, J. Exp. Bot., Volume 53 (2002), pp. 1237-1247
[13] Jaleel, C.A.; Gopi, R.; Manivannan, P.; Panneerselvam, R. Antioxidative potentials as a protective mechanism in Catharanthus roseus (L.) G. Don. plants under salinity stress, Turk. J. Bot., Volume 31 (2007), pp. 245-251
[14] Jaleel, C.A.; Gopi, R.; Manivannan, P.; Panneerselvam, R. Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity, Acta Physiol. Plant., Volume 29 (2007), pp. 205-209
[15] Sohan, D.; Jason, R.; Zajcek, J. Plant–water relations of NaCl and calcium-treated sunflower plants, Environ. Exp. Bot., Volume 42 (1999), pp. 105-111
[16] Singh, S.; Singh, K.; Singh, S.P. Effect of hormones on growth and yield characters of seed crop of kharif onion (Allium cepa L.), Indian J. Plant Physiol., Volume 38 (1995), pp. 193-196
[17] Singh, G.; Jain, S. Effect of some growth regulators on certain biochemical parameters during seed development in chickpea under salinity, Indian J. Plant Physiol., Volume 25 (1982), pp. 167-179
[18] Yan, F.; Schubert, S.; Mengel, K. Effect of low root medium pH on net proton release, root respiration and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.), Plant Physiol., Volume 99 (1992), pp. 415-421
[19] Rengel, Z. The role of calcium in salt toxicity, Plant Cell Environ., Volume 15 (1992), pp. 625-632
[20] Hernandez, J.A.; Almansa, M.S. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea plants, Physiol. Plant., Volume 115 (2002), pp. 251-257
[21] Misra, N.; Gupta, A.K. Effect of salinity and different nitrogen sources on the activity of antioxidant enzymes and indole alkaloid content in Catharanthus roseus seedlings, J. Plant Physiol., Volume 163 (2006), pp. 11-18
[22] Axelord, B.; Cheesbrough, T.M.; Laakso, S. Lipoxygenase from soybeans, Methods Enzymol., Volume 71 (1981), pp. 441-451
[23] Elkahoui, S.; Hernandez, J.A.; Abdelly, C.; Ghrir, R.; Limam, F. Effect of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells, Plant Sci., Volume 168 (2005), pp. 607-613
[24] Tan, Y.; Zongsuo, L.; Hongbo, S.; Feng, D. Effect of water deficits on the activity of antioxidative enzymes and osmoregulation among three different genotypes of Radix astragali at seeding stage, Colloids Surf. B. Bioint., Volume 49 (2006), pp. 60-65
[25] Sankar, B.; Somasundaram, R.; Manivannan, P.; Kishorekumar, A.; Jaleel, C.A.; Panneerselvam, R. Enhanced salinity tolerance of tomato (Lycopersicon esculentum (L.) Mill.) plants as affected by paclobutrazol treatment, J. Curr. Sci., Volume 9 (2006), pp. 917-920
[26] Sankar, B.; Jaleel, C.A.; Somasundaram, R.; Manivannan, P.; Kishorekumar, A.; Sridharan, R.; Panneerselvam, R. Influence of Triadimefon on the carbohydrate metabolism of salt stressed Abelmoschus esculentus (L.) Moench Seedlings, J. Theor. Exp. Biol., Volume 2 (2006), pp. 119-123
[27] Qureshi, M.I.; Israr, M.; Abdin, M.Z.; Iqbal, M. Responses of Artemisia annua L. to lead and salt-induced oxidative stress, Environ. Exp. Bot., Volume 53 (2005), pp. 185-193
[28] Sreevalli, Y.; Kulkarni, R.N.; Baskaran, K.; Chandrashekara, R.S. Increasing the content of leaf and root alkaloids of high alkaloid content mutants of periwinkle through nitrogen fertilization, Ind. Crops Prod., Volume 19 (2004), pp. 191-195
[29] Jaleel, C.A.; Gopi, R.; Alagu Lakshmanan, G.M.; Panneerselvam, R. Triadimefon induced changes in the antioxidant metabolism and ajmalicine production in Catharanthus roseus (L.) G. Don, Plant Sci., Volume 171 (2006), pp. 271-276
[30] Jaleel, C.A.; Gopi, R.; Manivannan, P.; Kishorekumar, A.; Sankar, B.; Panneerselvam, R. Paclobutrazol influences on vegetative growth and floral characteristics of Catharanthus roseus (L.) G. Don, Indian J. Appl. Pure Biol., Volume 21 (2006), pp. 369-372
[31] Jaleel, C.A.; Gopi, R.; Manivannan, P.; Sankar, B.; Kishorekumar, A.; Panneerselvam, R. Antioxidant potentials and ajmalicine accumulation in Catharanthus roseus after treatment with giberellic acid (Colloids Surf. B: Biointerfaces, in press, doi:)
[32] Jaleel, C.A.; Manivannan, P.; Kishorekumar, A.; Sankar, B.; Gopi, R.; Somasundaram, R.; Panneerselvam, R. Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit (Colloids Surf. B: Biointerfaces, in press, doi:)
[33] Jaleel, C.A.; Manivannan, P.; Sankar, B.; Kishorekumar, A.; Gopi, R.; Somasundaram, R.; Panneerselvam, R. Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation (Colloids Surf. B: Biointerfaces, in press, doi:)
[34] Jaleel, C.A.; Manivannan, P.; Sankar, B.; Kishorekumar, A.; Gopi, R.; Somasundaram, R.; Panneerselvam, R. Water deficit stress mitigation by calcium chloride in Catharanthus roseus; effects on oxidative stress, proline metabolism and indole alkaloid accumulation (Colloids Surf. B: Biointerfaces, in press, doi:)
[35] Jaleel, C.A.; Manivannan, P.; Sankar, B.; Kishorekumar, A.; Gopi, R.; Somasundaram, R.; Panneerselvam, R. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress (Colloids Surf. B: Biointerfaces, in press, doi:)
[36] Velikova, V.; Yordanov, I.; Edreva, A. Oxidative stress and some antioxidant system in acid treated bean plants: Protective role of exogenous polyamines, Plant Sci., Volume 151 (2000), pp. 59-66
[37] Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., Volume 125 (1968), pp. 189-198
[38] Bates, L.S.; Waldern, R.P.; Teare, I.D. Rapid determination of free proline for water stress studies, Plant Soil, Volume 39 (1973), pp. 205-207
[39] Grieve, C.M.; Grattan, S.R. Rapid assay for determination of water-soluble quaternary ammonium compounds, Plant Soil, Volume 70 (1983), pp. 303-307
[40] Hayzer, D.J.; Leisinger, T.H. The gene-enzyme relationships of proline biosynthesis in Escherichia coli, J. Gen. Microbiol., Volume 118 (1980), pp. 287-293
[41] Huang, A.H.C.; Cavalieri, A. Proline oxidase and water stress induced proline accumulation in spinach leaves, Plant Physiol., Volume 63 (1979), pp. 531-535
[42] Beauchamp, C.; Fridovich, I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., Volume 44 (1971), pp. 276-287
[43] Kumar, K.B.; Khan, P.A. Peroxidase and polyphenol oxidase in excised ragi (Eleusine coracana cv. PR 202) leaves during senescence, Ind. J. Exp. Bot., Volume 20 (1982), pp. 412-416
[44] Chandlee, J.M.; Scandalios, J.G. Analysis of variants affecting the catalase development program in maize scutellum, Theor. Appl. Genet., Volume 69 (1984), pp. 71-77
[45] Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding, Anal. Biochem., Volume 72 (1976), pp. 248-253
[46] Uniyal, G.C.; Bala, S.; Mathur, A.K.; Kulkarni, R.N. Symmetry C18 column: a better choice for the analysis of indole alkaloids of Catharanthus roseus, Phytochem. Anal., Volume 12 (2001), pp. 206-210
[47] Hernandez, J.A.; Ferrer, M.A.; Jimenez, A.; Barcelo, A.R.; Sevilla, F. Antioxidant system and O2•−/H2O2 production in the apoplast of Pisum sativum L. leaves: its relation with NaCl-induced necrotic lesions in minor veins, Plant Physiol., Volume 127 (2001), pp. 817-831
[48] Bor, M.; Ozdemir, F.; Turkan, I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet Beta vulgaris L. and wild beet Beta maritima L, Plant Sci., Volume 164 (2003), pp. 77-84
[49] Hong-Bo, S.; Xiao-Yan, C.; Li-Ye, C.; Zi-Ning, Z.; Gang, W.; Yong-Bing, Y.; Chang-Xing, Z.; Zan-Min, H. Investigation on the relationship of proline with wheat anti-drought under soil water deficits, Colloids Surf. B: Biointerfaces, Volume 53 (2006), pp. 113-119
[50] Teixeira, J.; Pereira, S. High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation, Environ. Exp. Bot., Volume 60 (2007) no. 1, pp. 121-126
[51] Girija, C.; Smith, B.N.; Swamy, P.M. Interactive effects of NaCl and CaCl2 on the accumulation of proline and glycine betaine in peanut (Arachis hypogaea L.), Environ. Exp. Bot., Volume 47 (2002), pp. 1-10
[52] Demiral, T.; Turkan, I. Exogenous glycine betaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress, Environ. Exp. Bot., Volume 56 (2006), pp. 72-79
[53] Sakamoto, A.; Murata, A.; Murata, N. Metabolic engineering of rice leading to biosynthesis of glycine betaine and tolerance to salt and cold, Plant Mol. Biol., Volume 38 (1998), pp. 1011-1019
[54] Charest, C.; Phan, C.T. Cold acclimation of wheat (Triticum aestivum): Properties of enzymes involved in proline metabolism, Physiol. Plant, Volume 80 (1990), pp. 159-168
[55] Sudhakar, C.; Reddy, P.S.; Veeranjaneyulu, K. Effect of salt stress on the enzymes of proline synthesis and oxidation of green gram seedlings, J. Plant Physiol., Volume 141 (1993), pp. 621-623
[56] Misra, N.; Gupta, A.K. Effect of salt stress on proline metabolism in two high yielding genotypes of greengram, Plant Sci., Volume 169 (2005), pp. 331-339
[57] Demir, Y. Growth and proline content of germinating wheat genotypes under ultraviolet light, Turk. J. Bot., Volume 24 (2000), pp. 67-70
[58] Delauney, A.J.; Verma, D.P.S. Proline biosynthesis and osmoregulation in plants, Plant J., Volume 4 (1993), pp. 215-223
[59] Hu, C.A.; Delauney, A.J.; Verma, D.P.S. A bifunctional enzyme (Δ′-Pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants, Proc. Natl Acad. Sci. USA, Volume 89 (1992), pp. 9354-9358
[60] Azooz, M.M.; Shaddad, M.A.; Abdel-Latef, A.A. The accumulation and compartmentation of proline in relation to salt tolerance of three sorghum cultivars, Indian J. Plant Physiol., Volume 9 (2004), pp. 1-8
[61] Yoshiba, Y.; Kiyouse, T.; Nakashima, K.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Regulation of levels of proline as an osmolyte in plants under water stress, Plant Cell Physiol., Volume 38 (1997), pp. 1095-1102
[62] Kavikishore, P.B.; Sangam, S.; Amrutha, R.N.; Srilaxmi, P.; Naidu, K.R.; Rao, K.R.S.S.; Rao, S.; Reddy, K.J.; Theriappan, P.; Sreenivasulu, N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance, Curr. Sci., Volume 88 (2005), pp. 424-438
[63] Marinos, N.G. Studies on submicroscopic aspects of mineral deficiencies. I. Calcium deficiency in the shoot apex of barley, Am. J. Bot., Volume 49 (1962), pp. 834-841
[64] Wang, S.G.; Liang, Y. Protection of 6-benzyladine on cell membrane system of rice seedlings under chilling stress, J. Rice Sci., Volume 9 (1995), pp. 223-229
[65] Sulochana, C.H.; Sreenivasa Rao, T.J.V.; Savithramma, N. Effect of calcium on water stress amelioration through calmodulin and scavenging enzymes in groundnut, Indian J. Plant Physiol., Volume 7 (2002), pp. 151-158