Cadmium toxicity affects chlorophyll a and b content, antioxidant enzyme activities and mineral nutrient accumulation in strawberry

Biological Research - Tập 48 Số 1 - 2015
Ferhad Muradoğlu1, Muttalip Gündoğdu1, Sezai Erċışlı2, Tarık ENCÜ3, F. Balta4, Hawa Z. E. Jaafar5, Muhammad Zia Ul Haq6
1Abant İzzet Baysal University, Bolu, Turkey
2Atatürk University, Erzurum, Turkey
3Yuzuncu Yil University, Van, Turkey
4Ordu University, Ordu, Turkey
5University Putra Malaysia, Selangor, Malaysia
6The Patent Office, Karachi, Pakistan

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ozbek K, Cebel N, Unver I. Extractability and phytoavailability of cadmium in Cd-rich pedogenic soils. Turk J Agric For. 2014;38:70–9.

Hassan M, Mansoor S. Oxidative stress and antioxidant defense mechanism in mung bean seedlings after lead and cadmium treatments. Turk J Agric For. 2014;38:55–61.

Zornoza P, Vazquez S, Esteban E, Fernandez-Pascual M, Carpena R. Cadmium-stress in nodulated white lupin: strategies to avoid toxicity. Plant Physiol Bioc. 2002;40:1003–9.

Liu J, Li K, Xu J, Liang J, Lu X, Yang J, et al. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crop Res. 2003;83:271–81.

Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Laerve AV, et al. Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. J Plant Physiol Biochem. 2005;43:437–44.

Mishra S, Srivastava S, Tripathi RD, Govidarajan R, Kuriakose SV, Prasad MNV. Phytochelatin Synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. J Plant Physiol Biochem. 2006;44:25–37.

Barcelo J, Poschenrieder C. Plant water relations as affected by heavy metal stress: a review. J Plant Nutr. 1990;13:1–37.

Chen YX, He YF, Luo YM, Yu YL, Lin Q, Wong MH. Physiological mechanism of plant roots exposed to cadmium. Chemosphere. 2003;50:789–93.

Hegedus A, Erdei S, Janda T, Toth E, Horvath G, Dubits D. Transgenic tobacco plants over producing alfafa aldose/aldehyde reductase show higher tolerance to low temperature and Cadmium stress. Plant Sci. 2004;166:1329–33.

Zhang H, Jiang Y, He Z, Ma M. Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol. 2005;162:977–84.

Demiral T, Turkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environ Exp Bot. 2005;53:247–57.

Asada K. The water-water cycle in chloroplasts: scavenging of active oxygen’s and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:601–39.

Shah K, Ritambhara GK, Verma S, Dubey RS. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci. 2001;161:1135–44.

Sbartai H, Rouabhi R, Sbartai I, Berrebbah H, Djebar RM. Induction of anti-oxidative enzymes by cadmium stress in tomato (Lycopersicon esculentum). Afr J Plant Sci. 2008;2:72–6.

Grant CA, Buckley WT, Bailey LD, Selles F. Cadmium accumulation in crops. Canadian J Plant Sci. 1998;78:1–17.

Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic. 2010;124(1):62–6.

Torun AA, Aka Kacar Y, Erdem N, Bicen B, Serce S. In vitro screening of octoploid Fragaria chiloensis and Fragaria virginiana genotypes against iron deficiency. Turk J Agric For. 2014;38:169–79.

Treder W, Cieslinski G. Cadmium uptake and distribution in strawberry plants as affected by its concentration in soil. J Fruit Ornam Plant Res. 2000;8:127–35.

Qian H, Li J, Sun L, Chen W, Sheng GD, Liu W, et al. Combined effect of copper and cadmium on Chlorella vulgaris growth and photosynthesis-related gene transcription. Aquat Toxicol. 2009;94:56–61.

Fang Z, Bouwkamp JC, Solomos T. Chlorophyllase activities and chlorophyll degradation during leaf senescence in non-yellowing mutant and wild type of Phaseolus vulgaris L. J Exp Bot. 1998;49:503–10.

Yang HY, Shi GX, Xu QS, Wang HX. Cadmium effects on mineral nutrition and stress-related induces in Potamogeton criprus. Russ J Plant Physl. 2011;58:253–60.

Gill SS, Khan NA, Tuteja N. Cadmium at high dose perturbs growth, photosynthesis and nitrogen metabolism while at low dose it up regulates sulfur assimilation and antioxidant machinery in garden cress (Lepidium sativum L.). Plant Sci. 2012;182:112–20.

Nada E, Ferjani BA, Rhouma A, Bechir BR, Imed M, Makki B. Cadmium-induced growth inhibition and alteration of biochemical parameters in almond seedlings grown in solution culture. Acta Physiol Plant. 2007;29:57–62.

di Toppi S, Gabrielli R. Response to cadmium in higher plants. Environ Exp Bot. 1999;41:105–30.

Sahin U, Anapali O, Ercisli S. Physico-chemical and physical properties of some substrates used in horticulture. Gartenbauwissenshaft. 2002;67(2):55–60.

Lichtentaler HK. Chlorophyll and carotenoids pigments of photosynthetic biomembranes. Meth Enzymol. 1994;148:350–82.

Heath RL, Packer L. Photoperoxidation in isolated chloroplast. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys. 1968;125:189–98.

Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

Giannopolitis CN, Ries SK. Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol. 1977;59:309–14.

Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach Chloroplasts. Plant Cell Physiol. 1981;22:867–80.