Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Vỏ quả cacao trong sản xuất axit citric dưới quá trình lên men rắn sử dụng phương pháp bề mặt phản hồi
Tóm tắt
Indonesia là một trong những quốc gia sản xuất ca cao lớn nhất thế giới với tổng sản lượng đạt 240.000 tấn vào năm 2019. Trong khi đó, chúng ta có khoảng 400.000 tấn vỏ quả cacao. Biomass từ vỏ quả cacao là một vấn đề nghiêm trọng tại Indonesia, nhưng đồng thời, nó cũng là một nguồn tài nguyên tái tạo quan trọng, đầy thách thức và thân thiện với môi trường cho sản xuất sinh học. Do đó, nó trở thành một mục tiêu nghiên cứu trong nghiên cứu này nhằm mục đích tận dụng vỏ quả cacao như một chất nền tái tạo cho sản xuất axit citric. Phương pháp lên men thể rắn (SSF) đã được áp dụng cho vỏ quả cacao sử dụng nấm Aspergillus niger Tiegh F359 để sản xuất axit citric. Phương pháp bề mặt phản hồi (RSM) đã được sử dụng để tối ưu hóa quá trình sản xuất axit citric với nồng độ nước, nồng độ nitơ và thời gian lên men là các yếu tố biến đổi. Khoảng 7530 ppm axit citric đã được sản xuất từ 1 g vỏ quả cacao như một nguồn cacbon. Tóm lại, nghiên cứu này đã thành công trong việc tối ưu hóa sản xuất axit citric bằng cách sử dụng SSF với A. niger Tiegh F359 và cung cấp một nghiên cứu cơ bản cho vỏ quả cacao như một chất nền tái tạo chi phí thấp cho sản xuất sản phẩm sinh học và các nỗ lực trong tương lai.
Từ khóa
#vỏ quả cacao #axit citric #lên men thể rắn #phương pháp bề mặt phản hồi #sản xuất sinh họcTài liệu tham khảo
Show PL, Oladele KO, Siew QY, Aziz Zakry FA, Lan JCW, Ling TC (2015) Overview of citric acid production from Aspergillus niger. Front Life Sci 8(3):271–283. https://doi.org/10.1080/21553769.2015.1033653
Ciriminna R, Meneguzzo F, Delisi R, Pagliaro M (2017) Citric acid: emerging applications of key biotechnology industrial product. Chem Cent J 11(1):1–9. https://doi.org/10.1186/s13065-017-0251-y
Angumeenal AR, Venkappayya D (2013) An overview of citric acid production. LWT - Food Sci Technol 50(2):367–370. https://doi.org/10.1016/j.lwt.2012.05.016
Ashy MA, Abou-Zeid AA (1982) Production of citric acid. Zentralbl Mikrobiol 137(5):395–405. https://doi.org/10.1016/s0232-4393(82)80018-8
Chanukya BS, Prakash M, Rastogi NK (2017) Extraction of citric acid from fruit juices using supported liquid membrane. J Food Process Preserv 41(1):1–10. https://doi.org/10.1111/jfpp.12790
Ozdal M, Kurbanoglu EB (2019) Citric acid production by Aspergillus niger from agro-industrial by-products: molasses and chicken feather peptone. Waste Biomass Valor 10(3):631–640. https://doi.org/10.1007/s12649-018-0240-y
Adeoye AO, Lateef A, Gueguim-kana EB (2015) Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel substrate Biocatalysis and Agricultural Biotechnology Optimization of citric acid production using a mutant strain of Aspergillus niger on cassava peel subst. Biocatal Agric Biotechnol 4(4):568–574. https://doi.org/10.1016/j.bcab.2015.08.004
Morgunov IG, Kamzolova SV, Lunina JN (2013) The citric acid production from raw glycerol by Yarrowia lipolytica yeast and its regulation. Appl Microbiol Biotechnol 97(16):7387–7397. https://doi.org/10.1007/s00253-013-5054-z
Levinson WE, Kurtzman CP, Kuo TM (2007) Characterization of Yarrowia lipolytica and related species for citric acid production from glycerol. Enzyme Microb Technol 41(3):292–295. https://doi.org/10.1016/j.enzmictec.2007.02.005
Anastassiadis S, Aivasidis A, Wandrey C (2002) Citric acid production by Candida strains under intracellular nitrogen limitation. Appl Microbiol Biotechnol 60(1–2):81–87. https://doi.org/10.1007/s00253-002-1098-1
West TP (2013) Citric acid production by Candida species grown on a soy-based crude glycerol. Prep Biochem Biotechnol 43(6):601–611. https://doi.org/10.1080/10826068.2012.762929
Chukwuemeka IC, Ethel OC, Kalu AD, Chukwuma N (2019) Citric acid production by Aspergillus niger using banana and plantain peels. GSC Biol Pharm Sci 8(2):015–021. https://doi.org/10.30574/gscbps.2019.8.2.0111
Assadi MM, Nikkhah M (2002) Production of citric acid from date pulp by solid state fermentation. J Agric Sci Technol 4:119–125
Zhou PP, Meng J, Bao J (2017) Fermentative production of high titer citric acid from corn stover feedstock after dry dilute acid pretreatment and biodetoxification. Bioresour. Technol. 224(May 2018):563–572. https://doi.org/10.1016/j.biortech.2016.11.046
Hennessey-Ramos L, Murillo-Arango W, Vasco-Correa J, Paz Astudillo IC (2021) Enzymatic extraction and characterization of pectin from cocoa pod husks (Theobroma cacao L.) using Celluclast® 1.5 L. Molecules 26(5):1473. https://doi.org/10.3390/molecules26051473
Cristina L, Dias R, Castanho DM, Lúcia C, Petkowicz DO (2011) Cacao pod husks ( Theobroma cacao L .): composition and hot-water-soluble pectins. Ind Corp Prod 34:1173–1181. https://doi.org/10.1016/j.indcrop.2011.04.004
Lotfy WA, Ghanem KM, El-Helow ER (2007) Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs. Bioresour Technol 98(18):3470–3477. https://doi.org/10.1016/j.biortech.2006.11.032
Dhillon GS, Brar SK, Verma M, Tyagi RD (2011) Recent advances in citric acid bio-production and recovery. Food Bioprocess Technol 4(4):505–529. https://doi.org/10.1007/s11947-010-0399-0
Dwivedi G, Sharma MP (2015) Application of Box-Behnken design in optimization of biodiesel yield from Pongamia oil and its stability analysis. Fuel 145:256–262. https://doi.org/10.1016/j.fuel.2014.12.063
Kumar A, Prasad B, Mishra IM (2007) Process parametric study for ethene carboxylic acid removal onto powder activated carbon using Box-Behnken design. Chem Eng Technol 30(7):932–937. https://doi.org/10.1002/ceat.200700084
Park Y, Kang S, Lee J, Hong S, Kim S (2002) Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl Microbiol Biotechnol 58(6):761–766. https://doi.org/10.1007/s00253-002-0965-0
Pangestu R, Amanah S, Juanssilfero AB, Yopi AB, Perwitasari U (2020) Response surface methodology for microwave-assisted extraction of pectin from cocoa pod husk (Theobroma cacao) mediated by oxalic acid. J Food Meas Charact 14(4):2126–2133. https://doi.org/10.1007/s11694-020-00459-4
Majumder L et al (2010) Citric acid production by Aspergillus niger using molasses and pumpkin as substrates National Mushroom Development and Extension Centre, Savar, Dhaka, Bangladesh. Eur J Biol Sci 2(1):1–8
Soccol CR, Vandenberghe LPS, Rodrigues C (2006) New perspectives for citric acid production and application. Food Technol Biotechnol 44(2):141–149
Juanssilfero AB et al (2018) Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi. J Biosci Bioeng 125(6):695–702. https://doi.org/10.1016/j.jbiosc.2017.12.020
Saavedra-Leos Z, Leyva-Porras C, Araujo-Díaz SB, Toxqui-Terán A, Borrás-Enríquez AJ (2015) Technological application of maltodextrins according to the degree of polymerization. Molecules 20(12):21067–21081. https://doi.org/10.3390/molecules201219746
Patyshakuliyeva A, Arentshorst M, Allijn IE, Ram AFJ, De Vries RP, Benoit I (2016) Improving cellulase production by Aspergillus niger using adaptive evolution. Biotechnol Lett 38(6):969–974. https://doi.org/10.1007/s10529-016-2060-0
Mansur D, Tago T, Masuda T, Abimanyu H (2014) ScienceDirect conversion of cacao pod husks by pyrolysis and catalytic reaction to produce useful chemicals. Biomass Bioenergy 1–11. https://doi.org/10.1016/j.biombioe.2014.03.065
Pal A, Khanum F (2010) Bioresource Technology Production and extraction optimization of xylanase from Aspergillus niger DFR-5 through solid-state-fermentation. Bioresour Technol 101(19):7563–7569. https://doi.org/10.1016/j.biortech.2010.04.033
Ottenheim C, Verdejo C, Zimmermann W, Wu JC (2014) Hemicellulase production by Aspergillus niger DSM 26641 in hydrothermal palm oil empty fruit bunch hydrolysate and transcriptome analysis. J Biosci Bioeng 118(6):696–701. https://doi.org/10.1016/j.jbiosc.2014.05.014
El Enshasy HA, Elsayed EA, Suhaimi N, Abd Malek R, Esawy M (2018) Bioprocess optimization for pectinase production using Aspergillus niger in a submerged cultivation system. BMC Biotechnology 18(1):1–13. https://doi.org/10.1186/s12896-018-0481-7
Martin SM, Wilson PW (1951) Uptake of C14O2 by Aspergillus niger in the formation of citric acid. Arch Biochem Biophys 32(1):150–157. https://doi.org/10.1016/0003-9861(51)90248-2
Nadeem A, Syed Q, Baig S, Irfan M, Nadeem M (2010) Enhanced production of citric acid by Aspergillus niger M-101 using lower alcohols. Turk J Biochem 35(1):7–13
Najafpour GD (2007) Material and elemental balance. Biochem Eng Biotechnol 228–251. https://doi.org/10.1016/b978-044452845-2/50009-4
Max B, Salgado JM, Rodríguez N, Cortés S, Converti A, Domínguez JM (2010) Biotechnological production of citric acid. Braz J Microbiol 41(4):862–875. https://doi.org/10.1590/S1517-83822010000400005
Palmonari A et al (2020) Short communication : characterization of molasses chemical composition. J Dairy Sci 10(10). https://doi.org/10.3168/jds.2019-17644
Vinayavekhin N (2020) Aspergillus niger upregulated glycerolipid metabolism and ethanol utilization pathway under ethanol stress. (September 2019):1–21. https://doi.org/10.1002/mbo3.948.
Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25(1):1–30. https://doi.org/10.1080/07388550590925383
Pandey A, Ashakumary L, Selvakumar P, Vijayalakshmi KS (1994) Influence of water activity on growth and activity of Aspergillus niger for glycoamylase production in solid-state fermentation. World J Microbiol Biotechnol 10(4):485–486. https://doi.org/10.1007/BF00144481
Ferreira P, Lopes M, Mota M, Belo I (2016) Oxygen transfer rate and pH as major operating parameters of citric acid production from glycerol by Yarrowia lipolytica W29 and CBS 2073. Chem Pap 70(7):869–876. https://doi.org/10.1515/chempap-2016-0024
Papagianni M (2007) Advances in citric acid fermentation by Aspergillus niger: biochemical aspects, membrane transport and modeling. Biotechnol Adv 25:244–263. https://doi.org/10.1016/j.biotechadv.2007.01.002