Cabruca agroforestry systems reduce vulnerability of cacao plantations to climate change in southern Bahia

Agronomy for Sustainable Development - Tập 42 - Trang 1-16 - 2022
Neander Marcel Heming1, Goetz Schroth2, Daniela C. Talora1, Deborah Faria1
1Applied Conservation Ecology Lab, Programa de Pós-graduação Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
2C.P. 513, 68109-000 Santarém, Brazil

Tóm tắt

In southern Bahia, Brazil’s traditional cacao region, cacao is mostly grown under the shade of thinned Atlantic Forest (known as cabruca). These agroforestry systems are gradually being replaced by unshaded cacao monocultures that might be more vulnerable to changes in climate; however, the impacts of climate change have not been evaluated yet. We assessed the impact of climate change on the climatic suitability of cacao plantations in southern Bahia and evaluated to what extent the cabrucas reduce the vulnerability of cacao as compared to unshaded plantations. We measured the maximum temperature in a gradient of canopy cover during the warmest month of the year and projected ecological niche models (MaxEnt) on climate projections for 2050 simulating the microclimate of three production systems: cabrucas, intermediate shading, and unshaded plantations. We found that canopy cover drastically reduces daily maximum temperature, so that understory temperature in cabrucas can be up to 6.0 °C lower than in unshaded plantations. We show for the first time that all projected environmental changes negatively affect cacao in southern Bahia, diminishing its climatic suitability and reducing overall suitable areas across the region. More importantly, this study is the first one to show that cabrucas can reduce the negative impacts of climate change for cacao, especially where temperature extremes approach or exceed crop tolerance limits. We conclude that maximizing short-term profits by implementing unshaded monocultures will likely lead to production losses in the long term. Cabrucas have a central role in reducing the vulnerability of cacao to climate change and since these traditional agroforestry systems cannot be quickly restored, their conservation should be an important goal of agricultural policies in the region.

Tài liệu tham khảo

Abdulai I, Jassogne L, Graefe S, Asare R, van Asten P, Läderach P, Vaast P (2018a) Characterization of cocoa production, income diversification and shade tree management along a climate gradient in Ghana. PLOS ONE 13:e0195777. https://doi.org/10.1371/journal.pone.0195777 Abdulai I, Vaast P, Hoffmann MP, Asare R, Jassogne L, van Asten P, Rötter RP, Graefe S (2018b) Cocoa agroforestry is less resilient to sub-optimal and extreme climate than cocoa in full sun. Glob Change Biol 24:273–286. https://doi.org/10.1111/gcb.13885 Agele S, Famuwagun B, Ogunleye A (2016) Effects of shade on microclimate, canopy characteristics and light integrals in dry season field-grown cocoa (Theobroma cacao L.) Seedlings. J Hortic Sci 11:47–56 Anderson RP, Gonzalez I (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: An implementation with Maxent. Ecological Modelling 222:2796–2811. https://doi.org/10.1016/j.ecolmodel.2011.04.011 Anderson RP (2012) Harnessing the world’s biodiversity data: promise and peril in ecological niche modeling of species distributions. Ann N Y Acad Sci 1260:66–80. https://doi.org/10.1111/j.1749-6632.2011.06440.x Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37:1378–1393. https://doi.org/10.1111/j.1365-2699.2010.02290.x de Angelis CF, Mcgregor GR, Kidd C (2004) A 3 year climatology of rainfall characteristics over tropical and subtropical South America based on tropical rainfall measuring mission precipitation radar data. Int J Climatol 24:385–399. https://doi.org/10.1002/joc.998 Araujo M, Alger K, Rocha R (1998) Mata Atlântica do sul da Bahia: situação atual, ações e perspectivas. Reserva Biosf Mata Atlântica – UNESCO – Programa MaB Caderno 8:1–36 Asare R, Asare RA, Asante WA et al (2017) Influences of shading and fertilization on on-farm yields of cocoa in Ghana. Exp Agric 53:416–431. https://doi.org/10.1017/S0014479716000466 Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011 Beer J, Muschler R, Kass D, Somarriba E (1997) Shade management in coffee and cacao plantations. Agrofor Syst 38:139–164. https://doi.org/10.1023/A:1005956528316 Binternagel NB, Juhrbandt J, Koch S, Purnomo M, Schwarze S, Barkmann J, Faust H (2010) Adaptation to climate change in Indonesia - livelihood strategies of rural households in the face of ENSO related droughts. In: Tscharntke T, Leuschner C, Veldkamp E et al (eds) Tropical Rainforests and Agroforests under Global Change: Ecological and Socio-economic Valuations. Springer, Berlin, Heidelberg, pp 351–375 Blaser WJ, Oppong J, Hart SP, Landolt J, Yeboah E, Six J (2018) Climate-smart sustainable agriculture in low-to-intermediate shade agroforests. Nat Sustain 1:234–239. https://doi.org/10.1038/s41893-018-0062-8 Caetano JM, Tessarolo G, de Oliveira G, Souza KS, Diniz-Filho JAF, Nabout JC (2018) Geographical patterns in climate and agricultural technology drive soybean productivity in Brazil. PLOS ONE 13:e0191273. https://doi.org/10.1371/journal.pone.0191273 Cassano CR, Barlow J, Pardini R (2012) Large mammals in an agroforestry mosaic in the Brazilian Atlantic Forest. Biotropica 44:818–825. https://doi.org/10.1111/j.1744-7429.2012.00870.x Crucifix M (2016) Palinsol: insolation for palaeoclimate studies. Version 0.93URL https://CRAN.R-project.org/package=palinsol Donald PF (2004) Biodiversity impacts of some agricultural commodity production systems. Conserv Biol 18:17–38. https://doi.org/10.1111/j.1523-1739.2004.01803.x Elith JH, Graham CP, Anderson R et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x FAO (2020a) Crop Ecological Requirements Database (ECOCROP) | Food and Agriculture Organization of the United Nations, Rome. http://www.fao.org/land-water/land/land-governance/land-resources-planning-toolbox/category/details/en/c/1027491/. Accessed 25 Jan 2020 FAO (2020b) Food and Agriculture Organization of the United Nations: Statistics Division (FAOSTAT). In: Food Agric. Organ. U. N. FAO. http://www.fao.org/faostat/en/#data/QC. Accessed 11 May 2020 Faria D, Paciencia MLB, Dixo M, Laps RR, Baumgarten J (2007) Ferns, frogs, lizards, birds and bats in forest fragments and shade cacao plantations in two contrasting landscapes in the Atlantic forest, Brazil. Biodivers Conserv 16:2335–2357. https://doi.org/10.1007/s10531-007-9189-z Flato G, Marotzke J, Abiodun B, et al (2013) Evaluation of climate models. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 741–866 Gateau-Rey L, Tanner EVJ, Rapidel B, Marelli JP, Royaert S (2018) Climate change could threaten cocoa production: Effects of 2015-16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PLOS ONE 13:e0200454. https://doi.org/10.1371/journal.pone.0200454 GBIF (2018) GBIF Occurrence Download.:278246 Gomes LC, Bianchi FJJA, Cardoso IM, Fernandes RBA, Filho EIF, Schulte RPO (2020) Agroforestry systems can mitigate the impacts of climate change on coffee production: a spatially explicit assessment in Brazil. Agric Ecosyst Environ 294:106858. https://doi.org/10.1016/j.agee.2020.106858 Gouvêa JBS, Mattos Silva LA, Hori M (1976) Fitogeografia. In: Diagnóstico sócio-econômico da região cacaueira. Comissao Executiva do Plano da Lavoura Cacaueira, Inter-American Institute of Agricultural Sciences, Ilhéus, Bahia, Brasil, pp 1–7 Guo D, Westra S, Peterson T (2020) Evapotranspiration: modelling actual, potential and reference crop evapotranspiration. Version 1.15URL https://CRAN.R-project.org/package=Evapotranspiration Hargreaves GH, Samani ZA (1982) Estimating potential evapotranspiration. J Irrig Drain Div 108:225–230 Hawkins D (1980) Identification of Outliers, 1st edn. Springer Netherlands Heming NM (2021a) Supplementary Material- Figures S1-S6 from: Cabruca agroforestry systems reduce vulnerability of cacao plantations to climate change in Southern Bahia, Brazil. Harv Dataverse. https://doi.org/10.7910/DVN/RBAXFW Heming NM (2021b) Replication data for: Cabruca agroforestry systems reduce vulnerability of cacao plantations to climate change In Southern Bahia, Brazil. Harv Dataverse. https://doi.org/10.7910/DVN/EB1Q2P Heming NM, Dambros C de S Gutiérrez EE (2019) ENMwizard: advanced techniques for ecological niche modeling made easy. Version 0.3URL https://github.com/HemingNM/ENMwizard Hijmans RJ (2012) Cross-validation of species distribution models: removing spatial sorting bias and calibration with a null model. Ecology 93:679–688. https://doi.org/10.1890/11-0826.1 Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276 Hutchins A, Tamargo A, Bailey C, Kim Y (2015) Assessment of climate change impacts on cocoa production and approaches to adaptation and mitigation: a contextual view of Ghana and Costa Rica. World Cocoa Foundation IBGE (2017) Sistema IBGE de Recuperação Automática - SIDRA. In: Inst. Bras. Geogr. E Estat. https://sidra.ibge.gov.br/pesquisa/pam/tabelas. Accessed 31 Jan 2019 IBGE (ed) (2019) Biomas e sistema costeiro-marinho do Brasil: compatível com a escala 1:250 000. Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro Igawa TK, de Toledo PM, Anjos LJS (2022) Climate change could reduce and spatially reconfigure cocoa cultivation in the Brazilian Amazon by 2050. PLOS ONE 17:e0262729. https://doi.org/10.1371/journal.pone.0262729 Jacobi J, Schneider M, Bottazzi P, Pillco M, Calizaya P, Rist S (2015) Agroecosystem resilience and farmers’ perceptions of climate change impacts on cocoa farms in Alto Beni, Bolivia. Renew Agric Food Syst 30:170–183. https://doi.org/10.1017/S174217051300029X Köhler M, Hanf A, Barus H, Hendrayanto, Hölscher D (2014) Cacao trees under different shade tree shelter: effects on water use. Agrofor Syst 88:63–73. https://doi.org/10.1007/s10457-013-9656-3 Läderach P, Martinez-Valle A, Schroth G, Castro N (2013) Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Clim Change 119:841–854. https://doi.org/10.1007/s10584-013-0774-8 Lahive F, Hadley P, Daymond AJ (2019) The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agron Sustain Dev 39:5. https://doi.org/10.1007/s13593-018-0552-0 Lambers H, Oliveira RS (2019) Plant physiological ecology. Springer International Publishing, Cham Landau EC, Hirsch A, Musinsky J et al (2008) Vegetation cover and land use in the Atlantic coastal forest of southern Bahia, Brazil, based on satellite imagery: a comparison among municipalities. Mem N Y Bot Gard 100:221–244 Liebig T, Ribeyre F, Läderach P, Poehling HM, van Asten P, Avelino J (2019) Interactive effects of altitude, microclimate and shading system on coffee leaf rust. J Plant Interact 14:407–415. https://doi.org/10.1080/17429145.2019.1643934 Lin BB (2014) Agroforestry adaptation and mitigation options for smallholder farmers vulnerable to climate change. In: Benkeblia N (ed) Agroecology, Ecosystems, and Sustainability. CRC Press, Boca Raton - London - New York, pp 221–237 Lin BB (2007) Agroforestry management as an adaptive strategy against potential microclimate extremes in coffee agriculture. Agric For Meteorol 144:85–94. https://doi.org/10.1016/j.agrformet.2006.12.009 Lin BB (2010) The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agroecosystems. Agric For Meteorol 150:510–518. https://doi.org/10.1016/j.agrformet.2009.11.010 Lin BB, Perfecto I, Vandermeer J (2008) Synergies between agricultural intensification and climate change could create surprising vulnerabilities for crops. BioScience 58:847–854. https://doi.org/10.1641/B580911 Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610. https://doi.org/10.1126/science.1152339 Martini AMZ, Fiaschi P, Amorim AM, da Paixão JL (2007) A hot-point within a hot-spot: a high diversity site in Brazil’s Atlantic Forest. Biodivers Conserv 16:3111–3128. https://doi.org/10.1007/s10531-007-9166-6 Mbuli CS, Fonjong LN, Fletcher AJ (2021) Climate change and small farmers’ vulnerability to food insecurity in Cameroon. Sustainability 13:1523. https://doi.org/10.3390/su13031523 Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DPP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. https://doi.org/10.1007/s10584-011-0156-z Mori SA, Boom BM, de Carvalho AM, dos Santos TS (1983) Southern Bahian moist forests. Bot Rev 49:155–232. https://doi.org/10.1007/BF02861011 Mori SA, Silva LAM (1979) The herbarium of the “Centro de Pesquisas do Cacau” at Itabuna, Brazil. Brittonia 31:177–196. https://doi.org/10.2307/2806174 Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5:1198–1205. https://doi.org/10.1111/2041-210X.12261 Nelson GC, Valin H, Sands RD, Havlík P, Ahammad H, Deryng D, Elliott J, Fujimori S, Hasegawa T, Heyhoe E, Kyle P, von Lampe M, Lotze-Campen H, Mason d’Croz D, van Meijl H, van der Mensbrugghe D, Müller C, Popp A, Robertson R et al (2014) Climate change effects on agriculture: economic responses to biophysical shocks. Proc Natl Acad Sci 111:3274–3279. https://doi.org/10.1073/pnas.1222465110 Niether W, Armengot L, Andres C et al (2018) Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann For Sci:75, 38. https://doi.org/10.1007/s13595-018-0723-9 Niether W, Schneidewind U, Armengot L, Adamtey N, Schneider M, Gerold G (2017) Spatial-temporal soil moisture dynamics under different cocoa production systems. CATENA 158:340–349. https://doi.org/10.1016/j.catena.2017.07.011 Pachauri RK, Allen MR, Barros VR, et al (2014) Climate Change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland Padovan MP, Cortez VJ, Navarrete LF, Navarrete ED, Deffner AC, Centeno LG, Munguía R, Barrios M, Vílchez-Mendoza JS, Vega-Jarquín C, Costa AN, Brook RM, Rapidel B (2015) Root distribution and water use in coffee shaded with Tabebuia rosea Bertol. and Simarouba glauca DC. compared to full sun coffee in sub-optimal environmental conditions. Agrofor Syst 89:857–868. https://doi.org/10.1007/s10457-015-9820-z Partelli FL, Araújo AV, Vieira HD, Dias JRM, Menezes LFT, Ramalho JC (2014) Microclimate and development of “Conilon” coffee intercropped with rubber trees. Pesqui Agropecuária Bras 49:872–881. https://doi.org/10.1590/S0100-204X2014001100006 Peterson A, Soberón J, Pearson R, et al (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton, N.J Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x Piasentin FB, Saito CH (2014) Os diferentes métodos de cultivo de cacau no sudeste da Bahia, Brasil: aspectos históricos e percepções. Bol Mus Para Emílio Goeldi Ciênc Humanas 9:61–78. https://doi.org/10.1590/S1981-81222014000100005 Pinheiro MP, de O Filho JA, França S et al (2013) Annual variation in canopy openness, air temperature and humidity in the understory of three forested sites in Southern Bahia State, Brazil. Ciênc Florest 23:107–116. https://doi.org/10.5902/198050988445 Pontes GM, Wainer I, Taschetto AS, Sen Gupta A, Abe-Ouchi A, Brady EC, Chan WL, Chandan D, Contoux C, Feng R, Hunter SJ, Kame Y, Lohmann G, Otto-Bliesner BL, Peltier WR, Stepanek C, Tindall J, Tan N, Zhang Q, Zhang Z (2020) Drier tropical and subtropical southern hemisphere in the mid-Pliocene warm period. Sci Rep 10:13458. https://doi.org/10.1038/s41598-020-68884-5 R Core Team (2020) R: a language and environment for statistical computing. Version 4.0.0. R Foundation for Statistical Computing, Vienna. URL https://www.R-project.org/ Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643. https://doi.org/10.1111/jbi.12227 Rajaud A, de Noblet-Ducoudré N (2017) Tropical semi-arid regions expanding over temperate latitudes under climate change. Clim Change 144:703–719. https://doi.org/10.1007/s10584-017-2052-7 Rice RA, Greenberg R (2000) Cacao cultivation and the conservation of biological diversity. AMBIO J Hum Environ 29:167–173. https://doi.org/10.1579/0044-7447-29.3.167 Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci 111:3268–3273. https://doi.org/10.1073/pnas.1222463110 Ruf F, Schroth G (2004) Chocolate forests and monocultures: a historical review of cocoa growing and its conflicting role in tropical deforestation and forest conservation. In: Schroth G, Fonseca GAB da, Harvey CA, et al. (eds) Agroforestry and Biodiversity Conservation in Tropical Landscapes. Island Press, Washington, D.C., pp 107–134 Sambuichi RHR, Vidal DB, Piasentin FB, Jardim JG, Viana TG, Menezes AA, Mello DLN, Ahnert D, Baligar VC (2012) Cabruca agroforests in southern Bahia, Brazil: tree component, management practices and tree species conservation. Biodivers Conserv 21:1055–1077. https://doi.org/10.1007/s10531-012-0240-3 Schroth G (1998) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agrofor Syst 43:5–34. https://doi.org/10.1023/A:1026443018920 Schroth G (1995) Tree root characteristics as criteria for species selection and systems design in agroforestry. Agrofor Syst 30:125–143. https://doi.org/10.1007/BF00708917 Schroth G, Faria D, Araujo M, Bede L, van Bael SA, Cassano CR, Oliveira LC, Delabie JHC (2011) Conservation in tropical landscape mosaics: the case of the cacao landscape of southern Bahia, Brazil. Biodivers Conserv 20:1635–1654. https://doi.org/10.1007/s10531-011-0052-x Schroth G, Läderach P, Martinez-Valle AI, Bunn C, Jassogne L (2016) Vulnerability to climate change of cocoa in West Africa: patterns, opportunities and limits to adaptation. Sci Total Environ 556:231–241. https://doi.org/10.1016/j.scitotenv.2016.03.024 Schwendenmann L, Veldkamp E, Moser G et al (2010) Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Glob Change Biol 16:1515–1530. https://doi.org/10.1111/j.1365-2486.2009.02034.x Sena Gomes AR, Kozlowski TT, Reich PB (1987) Some physiological responses of Theobroma cacao Var. Catongo seedlings to air humidity. New Phytol 107:591–602. https://doi.org/10.1111/j.1469-8137.1987.tb02929.x Sillero N, Arenas-Castro S, Enriquez-Urzelai U, Vale CG, Sousa-Guedes D, Martínez-Freiría F, Real R, Barbosa AM (2021) Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol Model 456:109671. https://doi.org/10.1016/j.ecolmodel.2021.109671 Simard M, Pinto N, Fisher JB, Baccini A (2011) Mapping forest canopy height globally with spaceborne lidar. J Geophys Res Biogeosciences 116. https://doi.org/10.1029/2011JG001708 Simões YS, Silva EHBC, Araújo HA de (2018) Rainfall zoning of Bahia State, Brazil: an update proposal. Revista Ambiente & Água 13:. https://doi.org/10.4136/ambi-agua.2171 de Sousa K, van Zonneveld M, Holmgren M, Kindt R, Ordoñez JC (2019) The future of coffee and cocoa agroforestry in a warmer Mesoamerica. Sci Rep 9:1–9. https://doi.org/10.1038/s41598-019-45491-7 Souza HN, Cardoso IM, Fernandes JM, Garcia FCP, Bonfim VR, Santos AC, Carvalho AF, Mendonça ES (2010) Selection of native trees for intercropping with coffee in the Atlantic Rainforest biome. Agrofor Syst 80:1–16. https://doi.org/10.1007/s10457-010-9340-9 Thomas WW, de Carvalho AMV, Amorim AM et al (2008) Diversity of woody plants in the Atlantic coastal forest of southern Bahia, Brazil. In: Thomas WW, Britton EG (eds) The Atlantic coastal forest of northeastern Brazil. Botanical Garden Press, New York, pp 21–66 Tichý L (2016) Field test of canopy cover estimation by hemispherical photographs taken with a smartphone. J Veg Sci 27:427–435. https://doi.org/10.1111/jvs.12350 Torres RR, Marengo JA (2014) Climate change hotspots over South America: from CMIP3 to CMIP5 multi-model datasets. Theor Appl Climatol 117:579–587. https://doi.org/10.1007/s00704-013-1030-x Tscharntke T, Clough Y, Bhagwat SA, Buchori D, Faust H, Hertel D, Hölscher D, Juhrbandt J, Kessler M, Perfecto I, Scherber C, Schroth G, Veldkamp E, Wanger TC (2011) Multifunctional shade-tree management in tropical agroforestry landscapes—a review. J Appl Ecol 48:619–629. https://doi.org/10.1111/[email protected]/(ISSN)1365-2664.FAGC Valle RR, da Silva WS, Miranda RAC (1987) Stomatal resistance and transpiration rates of shaded and unshaded cacao trees. Rev Theobroma 17:175–187 Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr 36:2290–2299. https://doi.org/10.1111/j.1365-2699.2009.02174.x Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl Publ Ecol Soc Am 21:335–342. https://doi.org/10.1890/10-1171.1 Warren DL, Wright AN, Seifert SN, Shaffer HB (2014) Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Diversity Distrib 20:334–343. https://doi.org/10.1111/ddi.12160 Willey RW (1975) The use of shade in coffee, cocoa and tea. Hortic Abstr 45:791–798 Wood GAR, Lass RA (2001) Cocoa, 4th edn. Wiley-Blackwell, Oxford