Ca2+-activated K+ channels: molecular determinants and function of the SK family
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gardos, G. The function of calcium in the potassium permeability of human erythrocytes. Biochim. Biophys. Acta 30, 653–654 (1958).
Meech, R. W. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp. Biochem. Physiol. A 42, 493–499 (1972).
Krnjevic, K. & Lisiewicz, A. Injections of calcium ions into spinal motoneurones. J. Physiol. (Lond.) 225, 363–390 (1972).
Alger, B. E. & Nicoll, R. A. Epileptiform burst afterhyperpolarization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science 210, 1122–1124 (1980).
Hotson, J. R. & Prince, D. A. A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. J. Neurophysiol. 43, 409–419 (1980).
Schwartzkroin, P. A. & Stafstrom, C. E. Effects of EGTA on the calcium-activated afterhyperpolarization in hippocampal CA3 pyramidal cells. Science 210, 1125–1126 (1980).
Blatz, A. L. & Magleby, K. L. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature 323, 718–720 (1986).
Lancaster, B. & Adams, P. R. Calcium-dependent current generating the afterhyperpolarization of hippocampal neurons. J. Neurophysiol. 55, 1268–1282 (1986).
Gutman, G. A. et al. International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol. Rev. 55, 583–586 (2003).
Kohler, M. et al. Small-conductance, calcium-activated potassium channels from mammalian brain. Science 273, 1709–1714 (1996). This paper reports the cloning and initial characterization of the SK channels, and was crucial for the further development of research on these channels and the currents that they generate.
Ishii, T. M. et al. A human intermediate conductance calcium-activated potassium channel. Proc. Natl Acad. Sci. USA 94, 11651–11656 (1997).
Joiner, W. J., Wang, L. Y., Tang, M. D. & Kaczmarek, L. K. hSK4, a member of a novel subfamily of calcium-activated potassium channels. Proc. Natl Acad. Sci. USA 94, 11013–11018 (1997).
Logsdon, N. J., Kang, J., Togo, J. A., Christian, E. P. & Aiyar, J. A novel gene, hKCa4, encodes the calcium-activated potassium channel in human T lymphocytes. J. Biol. Chem. 272, 32723–32726 (1997).
Litt, M., LaMorticella, D., Bond, C. T. & Adelman, J. P. Gene structure and chromosome mapping of the human small-conductance calcium-activated potassium channel SK1 gene (KCNN1). Cytogenet. Cell Genet. 86, 70–73 (1999).
Dror, V. et al. hKCa3/KCNN3 potassium channel gene: association of longer CAG repeats with schizophrenia in Israeli Ashkenazi Jews, expression in human tissues and localization to chromosome 1q21. Mol. Psychiatry 4, 254–260 (1999).
Shmukler, B. E. et al. Structure and complex transcription pattern of the mouse SK1 K(Ca) channel gene, KCNN1. Biochim. Biophys. Acta 1518, 36–46 (2001).
Zhang, B. M. et al. Calmodulin binding to the C-terminus of the small-conductance Ca2+-activated K+ channel hSK1 is affected by alternative splicing. Biochemistry 40, 3189–3195 (2001).
Tomita, H. et al. Novel truncated isoform of SK3 potassium channel is a potent dominant-negative regulator of SK currents: implications in schizophrenia. Mol. Psychiatry 8, 524–535 (2003).
Kolski-Andreaco, A. et al. SK3-1C, a dominant-negative suppressor of SKCa and IKCa channels. J. Biol. Chem. 279, 6893–6904 (2004).
Wittekindt, O. H. et al. An apamin- and scyllatoxin-insensitive isoform of the human SK3 channel. Mol. Pharmacol. 65, 788–801 (2004).
Shakkottai, V. G. et al. Enhanced neuronal excitability in the absence of neurodegeneration induces cerebellar ataxia. J. Clin. Invest. 113, 582–590 (2004).
Villalobos, C., Shakkottai, V. G., Chandy, K. G., Michelhaugh, S. K. & Andrade, R. SKCa channels mediate the medium but not the slow calcium-activated afterhyperpolarization in cortical neurons. J. Neurosci. 24, 3537–3542 (2004). In this paper, transgenic mice that overexpressed an SK-channel splice variant, and biolistic transfection of brain slices, were used to show that the sI AHP is not generated by SK channels in neocortical neurons.
Hirschberg, B., Maylie, J., Adelman, J. P. & Marrion, N. V. Gating of recombinant small-conductance Ca-activated K+ channels by calcium. J. Gen. Physiol. 111, 565–581 (1998).
Xia, X. M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998). In this work, CaM was identified as a constitutive SK-channel subunit that is responsible for the Ca2+-dependent activation of the channels.
Soh, H. & Park, C. S. Inwardly rectifying current–voltage relationship of small-conductance Ca2+-activated K+ channels rendered by intracellular divalent cation blockade. Biophys. J. 80, 2207–2215 (2001).
Soh, H. & Park, C. S. Localization of divalent cation-binding site in the pore of a small conductance Ca2+-activated K+ channel and its role in determining current-voltage relationship. Biophys. J. 83, 2528–2538 (2002).
Helmchen, F., Imoto, K. & Sakmann, B. Ca2+ buffering and action potential-evoked Ca2+ signaling in dendrites of pyramidal neurons. Biophys. J. 70, 1069–1081 (1996).
Eilers, J., Callewaert, G., Armstrong, C. & Konnerth, A. Calcium signaling in a narrow somatic submembrane shell during synaptic activity in cerebellar Purkinje neurons. Proc. Natl Acad. Sci. USA 92, 10272–10276 (1995).
Robbins, J., Cloues, R. & Brown, D. A. Intracellular Mg2+ inhibits the IP3-activated IKCa in NG108-15 cells. Why intracellular citrate can be useful for recording IKCa . Pflugers Arch. 420, 347–353 (1992).
Alvarez-Leefmans, F. J., Giraldez, F. & Gamino, S. M. Intracellular free magnesium in excitable cells: its measurement and its biologic significance. Can. J. Physiol. Pharmacol. 65, 915–925 (1987).
Fanger, C. M. et al. Calmodulin mediates calcium-dependent activation of the intermediate conductance KCa channel, IKCa1. J. Biol. Chem. 274, 5746–5754 (1999).
Keen, J. E. et al. Domains responsible for constitutive and Ca2+-dependent interactions between calmodulin and small conductance Ca2+-activated potassium channels. J. Neurosci. 19, 8830–8838 (1999).
Picton, C., Klee, C. B. & Cohen, P. Phosphorylase kinase from rabbit skeletal muscle: identification of the calmodulin-binding subunits. Eur. J. Biochem. 111, 553–561 (1980).
Schumacher, M. A., Rivard, A. F., Bachinger, H. P. & Adelman, J. P. Structure of the gating domain of a Ca2+-activated K+ channel complexed with Ca2+/calmodulin. Nature 410, 1120–1124 (2001). X-ray crystallography revealed the structure of the CaM-binding region in the SK2 channel in the presence of Ca2+. On the basis of the structural analysis and more biochemical evidence, a model for SK-channel opening was proposed.
Wissmann, R. et al. A helical region in the C terminus of small-conductance Ca2+-activated K+ channels controls assembly with apo-calmodulin. J. Biol. Chem. 277, 4558–4564 (2002).
Schumacher, M. A., Crum, M. & Miller, M. C. Crystal structures of apocalmodulin and an apocalmodulin/SK potassium channel gating domain complex. Structure (Camb.) 12, 849–860 (2004).
Rhoads, A. R. & Friedberg, F. Sequence motifs for calmodulin recognition. FASEB J. 11, 331–340 (1997).
Liang, H. et al. Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39, 951–960 (2003).
Bruening-Wright, A., Schumacher, M. A., Adelman, J. P. & Maylie, J. Localization of the activation gate for small conductance Ca2+-activated K+ channels. J. Neurosci. 22, 6499–6506 (2002).
Liu, Y., Holmgren, M., Jurman, M. E. & Yellen, G. Gated access to the pore of a voltage-dependent K+ channel. Neuron 19, 175–184 (1997).
Fanger, C. M. et al. Calcium-activated potassium channels sustain calcium signaling in T lymphocytes. Selective blockers and manipulated channel expression levels. J. Biol. Chem. 276, 12249–12256 (2001).
Miller, M. J. et al. Nuclear localization and dominant-negative suppression by a mutant SKCa3 N-terminal channel fragment identified in a patient with schizophrenia. J. Biol. Chem. 276, 27753–27756 (2001).
Khanna, R., Chang, M. C., Joiner, W. J., Kaczmarek, L. K. & Schlichter, L. C. hSK4/hIK1, a calmodulin-binding KCa channel in human T lymphocytes. Roles in proliferation and volume regulation. J. Biol. Chem. 274, 14838–14849 (1999).
Joiner, W. J., Khanna, R., Schlichter, L. C. & Kaczmarek, L. K. Calmodulin regulates assembly and trafficking of SK4/IK1 Ca2+-activated K+ channels. J. Biol. Chem. 276, 37980–37985 (2001).
Lee, W. S., Ngo-Anh, T. J., Bruening-Wright, A., Maylie, J. & Adelman, J. P. Small conductance Ca2+-activated K+ channels and calmodulin: cell surface expression and gating. J. Biol. Chem. 278, 25940–25946 (2003).
Jenke, M. et al. C-terminal domains implicated in the functional surface expression of potassium channels. EMBO J. 22, 395–403 (2003).
Syme, C. A. et al. Trafficking of the Ca2+-activated K+ channel, hIK1, is dependent upon a C-terminal lucine zipper. J. Biol. Chem. 278, 8476–8486 (2003).
Ishii, T. M., Maylie, J. & Adelman, J. P. Determinants of apamin and d-tubocurarine block in SK potassium channels. J. Biol. Chem. 272, 23195–23200 (1997).
Bowden, S. E., Fletcher, S., Loane, D. J. & Marrion, N. V. Somatic colocalization of rat SK1 and D class (Cav1. 2) L-type calcium channels in rat CA1 hippocampal pyramidal neurons. J. Neurosci. 21, RC175 (2001).
Benton, D. C. et al. Small conductance Ca2+-activated K+ channels formed by the expression of rat SK1 and SK2 genes in HEK 293 cells. J. Physiol. (Lond.) 553, 13–19 (2003).
D'Hoedt, D., Hirzel, K., Pedarzani, P. & Stocker, M. Domain analysis of the calcium-activated potassium channel SK1 from rat brain. Functional expression and toxin sensitivity. J. Biol. Chem. 279, 12088–12092 (2004).
Monaghan, A. S. et al. The SK3 subunit of small conductance Ca2+-activated K+ channels interacts with both SK1 and SK2 subunits in a heterologous expression system. J. Biol. Chem. 279, 1003–1009 (2004).
Sailer, C. A. et al. Regional differences in distribution and functional expression of small-conductance Ca2+-activated K+ channels in rat brain. J. Neurosci. 22, 9698–9707 (2002).
Schmid-Antomarchi, H. et al. Molecular properties of the apamin-binding component of the Ca2+-dependent K+ channel. Radiation-inactivation, affinity labelling and solubilization. Eur. J. Biochem. 142, 1–6 (1984).
Seagar, M. J., Labbe-Jullie, C., Granier, C., Van Rietschoten, J. & Couraud, F. Photoaffinity labeling of components of the apamin-sensitive K+ channel in neuronal membranes. J. Biol. Chem. 260, 3895–3898 (1985).
Wadsworth, J. D., Doorty, K. B. & Strong, P. N. Comparable 30-kDa apamin binding polypeptides may fulfill equivalent roles within putative subtypes of small conductance Ca2+-activated K+ channels. J. Biol. Chem. 269, 18053–18061 (1994).
Stocker, M. & Pedarzani, P. Differential distribution of three Ca2+-activated K+ channel subunits, SK1, SK2, and SK3, in the adult rat central nervous system. Mol. Cell. Neurosci. 15, 476–493 (2000).
Tacconi, S. et al. Distribution of the messenger RNA for the small conductance calcium-activated potassium channel SK3 in the adult rat brain and correlation with immunoreactivity. Neuroscience 102, 209–215 (2001).
Hosseini, R., Benton, D. C., Dunn, P. M., Jenkinson, D. H. & Moss, G. W. SK3 is an important component of K+ channels mediating the afterhyperpolarization in cultured rat SCG neurones. J. Physiol. (Lond.) 535, 323–334 (2001).
Boettger, M. K. et al. Calcium-activated potassium channel SK1- and IK1-like immunoreactivity in injured human sensory neurones and its regulation by neurotrophic factors. Brain 125, 252–263 (2002).
Arnold, S. J. et al. Decreased potassium channel IK1 and its regulator neurotrophin-3 (NT-3) in inflamed human bowel. Neuroreport 14, 191–195 (2003).
Sailer, C. A., Kaufmann, W. A., Marksteiner, J. & Knaus, H. G. Comparative immunohistochemical distribution of three small-conductance Ca2+-activated potassium channel subunits, SK1, SK2, and SK3 in mouse brain. Mol. Cell. Neurosci. 26, 458–469 (2004).
Stocker, M., Krause, M. & Pedarzani, P. An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc. Natl Acad. Sci. USA 96, 4662–4667 (1999). In this paper, the existence of the apamin-sensitive I AHP current in hippocampal pyramidal neurons was shown for the first time. For a long time, it had been believed that only the sI AHP was present in these neurons.
Pedarzani, P., Kulik, A., Muller, M., Ballanyi, K. & Stocker, M. Molecular determinants of Ca2+-dependent K+ channel function in rat dorsal vagal neurones. J. Physiol. (Lond.) 527, 283–290 (2000).
Wolfart, J., Neuhoff, H., Franz, O. & Roeper, J. Differential expression of the small-conductance, calcium-activated potassium channel SK3 is critical for pacemaker control in dopaminergic midbrain neurons. J. Neurosci. 21, 3443–3456 (2001). In this paper, patch-clamp recordings, single-cell RT-PCR and immunohistochemistry revealed the function of SK3 channels in midbrain dopaminergic neurons, which is to control the frequency and precision of spontaneous firing.
Roncarati, R., Di Chio, M., Sava, A., Terstappen, G. C. & Fumagalli, G. Presynaptic localization of the small conductance calcium-activated potassium channel SK3 at the neuromuscular junction. Neuroscience 104, 253–262 (2001).
Obermair, G. J., Kaufmann, W. A., Knaus, H. G. & Flucher, B. E. The small conductance Ca2+-activated K+ channel SK3 is localized in nerve terminals of excitatory synapses of cultured mouse hippocampal neurons. Eur. J. Neurosci. 17, 721–731 (2003).
Schwindt, P. C. et al. Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. J. Neurophysiol. 59, 424–449 (1988).
Storm, J. F. An after-hyperpolarization of medium duration in rat hippocampal pyramidal cells. J. Physiol. (Lond.) 409, 171–190 (1989).
Lancaster, B. & Nicoll, R. A. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J. Physiol. (Lond.) 389, 187–203 (1987).
Kramar, E. A. et al. A novel mechanism for the facilitation of theta-induced long-term potentiation by brain-derived neurotrophic factor. J. Neurosci. 24, 5151–5161 (2004).
Sah, P. Ca2+-activated K+ currents in neurones: types, physiological roles and modulation. Trends Neurosci. 19, 150–154 (1996).
Vogalis, F., Storm, J. F. & Lancaster, B. SK channels and the varieties of slow after-hyperpolarizations in neurons. Eur. J. Neurosci. 18, 3155–3166 (2003).
Stocker, M., Hirzel, K., D'Hoedt, D. & Pedarzani, P. Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations. Toxicon 43, 933–949 (2004).
Gehlert, D. R. & Gackenheimer, S. L. Comparison of the distribution of binding sites for the potassium channel ligands [125I]apamin, [125I]charybdotoxin and [125I]iodoglyburide in the rat brain. Neuroscience 52, 191–205 (1993).
Edgerton, J. R. & Reinhart, P. H. Distinct contributions of small and large conductance Ca2+-activated K+ channels to rat Purkinje neuron function. J. Physiol. (Lond.) 548, 53–69 (2003).
Cingolani, L. A., Gymnopoulos, M., Boccaccio, A., Stocker, M. & Pedarzani, P. Developmental regulation of small-conductance Ca2+-activated K+ channel expression and function in rat Purkinje neurons. J. Neurosci. 22, 4456–4467 (2002).
Womack, M. D. & Khodakhah, K. Somatic and dendritic small-conductance calcium-activated potassium channels regulate the output of cerebellar Purkinje neurons. J. Neurosci. 23, 2600–2607 (2003).
Hallworth, N. E., Wilson, C. J. & Bevan, M. D. Apamin-sensitive small conductance calcium-activated potassium channels, through their selective coupling to voltage-gated calcium channels, are critical determinants of the precision, pace, and pattern of action potential generation in rat subthalamic nucleus neurons in vitro. J. Neurosci. 23, 7525–7542 (2003).
Bond, C. T. et al. SK knockout mice reveal the identity of calcium-dependent AHP currents. J. Neurosci. 24, 5301–5306 (2004). Transgenic mice lacking specific SK-channel subunits were used to analyse the contribution of SK1, SK2 and SK3 to the AHP currents in hippocampal pyramidal neurons. This work shows that SK2 is the main subunit that mediates I AHP , whereas none of the SK-channel subunits is responsible for the generation of sI AHP in these cells.
Pedarzani, P. et al. Control of electrical activity in central neurons by modulating the gating of small conductance Ca2+-activated K+ channels. J. Biol. Chem. 276, 9762–9769 (2001).
Zhang, L. & McBain, C. J. Potassium conductances underlying repolarization and after-hyperpolarization in rat CA1 hippocampal interneurones. J. Physiol. (Lond.) 488, 661–672 (1995).
Savic, N., Pedarzani, P. & Sciancalepore, M. Medium afterhyperpolarization and firing pattern modulation in interneurons of stratum radiatum in the CA3 hippocampal region. J. Neurophysiol. 85, 1986–1997 (2001).
Loewy, A. D. & Spyer, K. M. in Central Regulation of Autonomic Functions (eds Loewy, A. D. & Spyer, K. M.) 68–87 (Oxford Univ. Press, New York, 1990).
Bosch, M. A., Kelly, M. J. & Ronnekleiv, O. K. Distribution, neuronal colocalization, and 17β-E2 modulation of small conductance calcium-activated K+ channel (SK3) mRNA in the guinea pig brain. Endocrinology 143, 1097–1107 (2002).
Kirkpatrick, K. & Bourque, C. W. Activity dependence and functional role of the apamin-sensitive K+ current in rat supraoptic neurones in vitro. J. Physiol. (Lond.) 494, 389–398 (1996).
Cloues, R. K. & Sather, W. A. Afterhyperpolarization regulates firing rate in neurons of the suprachiasmatic nucleus. J. Neurosci. 23, 1593–1604 (2003).
Bennett, B. D., Callaway, J. C. & Wilson, C. J. Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. J. Neurosci. 20, 8493–8503 (2000).
Sourdet, V., Russier, M., Daoudal, G., Ankri, N. & Debanne, D. Long-term enhancement of neuronal excitability and temporal fidelity mediated by metabotropic glutamate receptor subtype 5. J. Neurosci. 23, 10238–10248 (2003). This work shows that SK channels are modulated by metabotropic glutamate receptors (mGluR5), thereby contributing to the long-term potentiation of intrinsic excitability that is observed in neocortical neurons.
Bond, C. T. et al. Respiration and parturition affected by conditional overexpression of the Ca2+-activated K+ channel subunit, SK3. Science 289, 1942–1946 (2000).
Catterall, W. A. Structure and regulation of voltage gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000).
Sah, P. Different calcium channels are coupled to potassium channels with distinct physiological roles in vagal neurons. Proc. R. Soc. Lond. B 260, 105–111 (1995).
Pineda, J. C., Waters, R. S. & Foehring, R. C. Specificity in the interaction of HVA Ca2+ channel types with Ca2+-dependent AHPs and firing behavior in neocortical pyramidal neurons. J. Neurophysiol. 79, 2522–2534 (1998).
Wolfart, J. & Roeper, J. Selective coupling of T-type calcium channels to SK potassium channels prevents intrinsic bursting in dopaminergic midbrain neurons. J. Neurosci. 22, 3404–3413 (2002).
Umemiya, M. & Berger, A. J. Properties and function of low- and high-voltage-activated Ca2+ channels in hypoglossal motoneurons. J. Neurosci. 14, 5652–5660 (1994).
Williams, S., Serafin, M., Muhlethaler, M. & Bernheim, L. Distinct contributions of high- and low-voltage-activated calcium currents to afterhyperpolarizations in cholinergic nucleus basalis neurons of the guinea pig. J. Neurosci. 17, 7307–7315 (1997).
Marrion, N. V. & Tavalin, S. J. Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395, 900–905 (1998). In this study, single-channel analysis showed the close proximity of Ca2+-activated K+ channels and Ca2+ channels in acutely dissociated neurons of the hippocampus.
Hirschberg, B., Maylie, J., Adelman, J. P. & Marrion, N. V. Gating properties of single SK channels in hippocampal CA1 pyramidal neurons. Biophys. J. 77, 1905–1913 (1999).
Oliver, D. et al. Gating of Ca2+-activated K+ channels controls fast inhibitory synaptic transmission at auditory outer hair cells. Neuron 26, 595–601 (2000).
Fiorillo, C. D. & Williams, J. T. Glutamate mediates an inhibitory postsynaptic potential in dopamine neurons. Nature 394, 78–82 (1998). This paper reports the first example of a slow inhibitory action of synaptically released glutamate in the mammalian brain. In ventral midbrain dopamine neurons, stimulation of a metabotropic glutamate receptor triggered release of intracellular Ca2+ and activation of SK channels that hyperpolarized the membrane.
Akita, T. & Kuba, K. Functional triads consisting of ryanodine receptors, Ca2+ channels, and Ca2+-activated K+ channels in bullfrog sympathetic neurons. Plastic modulation of action potential. J. Gen. Physiol. 116, 697–720 (2000).
Sandler, V. M. & Barbara, J. G. Calcium-induced calcium release contributes to action potential-evoked calcium transients in hippocampal CA1 pyramidal neurons. J. Neurosci. 19, 4325–4336 (1999).
Messier, C. et al. Effect of apamin, a toxin that inhibits Ca2+-dependent K+ channels, on learning and memory processes. Brain Res. 551, 322–326 (1991).
Deschaux, O., Bizot, J. C. & Goyffon, M. Apamin improves learning in an object recognition task in rats. Neurosci. Lett. 222, 159–162 (1997).
Deschaux, O. & Bizot, J. C. Effect of apamin, a selective blocker of Ca2+-activated K+-channel, on habituation and passive avoidance responses in rats. Neurosci. Lett. 227, 57–60 (1997).
van der Staay, F. J., Fanelli, R. J., Blokland, A. & Schmidt, B. H. Behavioral effects of apamin, a selective inhibitor of the SKCa-channel, in mice and rats. Neurosci. Biobehav. Rev. 23, 1087–1110 (1999).
Fournier, C., Kourrich, S., Soumireu-Mourat, B. & Mourre, C. Apamin improves reference memory but not procedural memory in rats by blocking small conductance Ca2+-activated K+ channels in an olfactory discrimination task. Behav. Brain Res. 121, 81–93 (2001).
Ikonen, S. & Riekkinen, P., Jr. Effects of apamin on memory processing of hippocampal-lesioned mice. Eur. J. Pharmacol. 382, 151–156 (1999).
Behnisch, T. & Reymann, K. G. Inhibition of apamin-sensitive calcium dependent potassium channels facilitate the induction of long-term potentiation in the CA1 region of rat hippocampus in vitro. Neurosci. Lett. 253, 91–94 (1998).
Norris, C. M., Halpain, S. & Foster, T. C. Reversal of age-related alterations in synaptic plasticity by blockade of L-type Ca2+ channels. J. Neurosci. 18, 3171–3179 (1998).
Stackman, R. W. et al. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J. Neurosci. 22, 10163–10171 (2002).
Blank, T., Nijholt, I., Kye, M. J., Radulovic, J. & Spiess, J. Small-conductance, Ca2+-activated K+ channel SK3 generates age-related memory and LTP deficits. Nature Neurosci. 6, 911–912 (2003).
Sah, P. & McLachlan, E. M. Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca2+-activated Ca2+ release. Neuron 7, 257–264 (1991).
Lasser-Ross, N., Ross, W. N. & Yarom, Y. Activity-dependent [Ca2+]i changes in guinea pig vagal motoneurons: relationship to the slow afterhyperpolarization. J. Neurophysiol. 78, 825–834 (1997).
Sah, P. & Clements, J. D. Photolytic manipulation of [Ca2+]i reveals slow kinetics of potassium channels underlying the afterhyperpolarization in hippocampal pyramidal neurons. J. Neurosci. 19, 3657–3664 (1999).
Madison, D. V. & Nicoll, R. A. Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299, 636–638 (1982).
Madison, D. V. & Nicoll, R. A. Cyclic adenosine 3′,5′-monophosphate mediates β-receptor actions of noradrenaline in rat hippocampal pyramidal cells. J. Physiol. (Lond.) 372, 245–259 (1986).
Pedarzani, P. & Storm, J. F. PKA mediates the effects of monoamine transmitters on the K+ current underlying the slow spike frequency adaptation in hippocampal neurons. Neuron 11, 1023–1035 (1993).
Haas, H. L. & Rose, G. M. Noradrenaline blocks potassium conductance in rat dentate granule cells in vitro. Neurosci. Lett. 78, 171–174 (1987).
Schwindt, P. C., Spain, W. J. & Crill, W. E. Calcium-dependent potassium currents in neurons from cat sensorimotor cortex. J. Neurophysiol. 67, 216–226 (1992).
Osmanovic, S. S. & Shefner, S. A. Calcium-activated hyperpolarizations in rat locus coeruleus neurons in vitro. J. Physiol. (Lond.) 469, 89–109 (1993).
Womble, M. D. & Moises, H. C. Muscarinic modulation of conductances underlying the afterhyperpolarization in neurons of the rat basolateral amygdala. Brain Res. 621, 87–96 (1993).
Faber, E. S. & Sah, P. Physiological role of calcium-activated potassium currents in the rat lateral amygdala. J. Neurosci. 22, 1618–1628 (2002).
Strobaek, D., Jorgensen, T. D., Christophersen, P., Ahring, P. K. & Olesen, S. P. Pharmacological characterization of small-conductance Ca2+-activated K+ channels stably expressed in HEK 293 cells. Br. J. Pharmacol. 129, 991–999 (2000).
Shah, M. & Haylett, D. G. The pharmacology of hSK1 Ca2+-activated K+ channels expressed in mammalian cell lines. Br. J. Pharmacol. 129, 627–630 (2000).
Lorenzon, N. M. & Foehring, R. C. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J. Neurophysiol. 67, 350–363 (1992).
Jentsch, T. J. Neuronal KCNQ potassium channels: physiology and role in disease. Nature Rev. Neurosci. 1, 21–30 (2000).
Yuan, A. et al. The sodium-activated potassium channel is encoded by a member of the slo gene family. Neuron 37, 765–773 (2003).
Grunnet, M. et al. Pharmacological modulation of SK3 channels. Neuropharmacology 40, 879–887 (2001).
Finlayson, K. et al. Characterisation of [125I]-apamin binding sites in rat brain membranes with HE293 cells transfected with SK channel subtypes. Neuropharmacology 41, 341–350 (2001).
Chicchi, G. G. et al. Purification and characterization of a unique potent inhibitor of apamin binding from Leiurus-Quinquestriatus-Hebraeus venom. J. Biol. Chem. 263, 10192–10197 (1988).
Zerrouk, H., Mansuelle, P., Benslimane, A., Rochat, H. & Martin-Eauclaire, M. F. Characterization of a new leiurotoxin I-like scorpion toxin. PO5 from Androctonus mauretanicus mauretanicus. FEBS Lett. 320, 189–192 (1993).
Pedarzani, P. et al. Tamapin, a venom peptide from the Indian red scorpion (Mesobuthus tamulus) that targets small conductance Ca2+-activated K+ channels and afterhyperpolarization currents in central neurons. J. Biol. Chem. 277, 46101–46109 (2002).
Shakkottai, V. G. et al. Design and characterization of a highly selective peptide inhibitor of the small conductance calcium-activated K+ channel, SkCa2. J. Biol. Chem. 276, 43145–43151 (2001).
Liegeois, J. F. et al. Modulation of small conductance calcium-activated potassium (SK) channels: a new challenge in medicinal chemistry. Curr. Med. Chem. 10, 625–647 (2003).
Dreixler, J. C. et al. Block of rat brain recombinant SK channels by tricyclic antidepressants and related compounds. Eur. J. Pharmacol. 401, 1–7 (2000).
Terstappen, G. C., Pula, G., Carignani, C., Chen, M. X. & Roncarati, R. Pharmacological characterisation of the human small conductance calcium-activated potassium channel hSK3 reveals sensitivity to tricyclic antidepressants and antipsychotic phenothiazines. Neuropharmacology 40, 772–783 (2001).
Terstappen, G. C. et al. The antidepressant fluoxetine blocks the human small conductance calcium-activated potassium channels SK1, SK2 and SK3. Neurosci. Lett. 346, 85–88 (2003).
Syme, C. A., Gerlach, A. C., Singh, A. K. & Devor, D. C. Pharmacological activation of cloned intermediate- and small-conductance Ca2+-activated K+ channels. Am. J. Physiol. Cell Physiol. 278, C570–C581 (2000).
Cao, Y. J., Dreixler, J. C., Couey, J. J. & Houamed, K. M. Modulation of recombinant and native neuronal SK channels by the neuroprotective drug riluzole. Eur. J. Pharmacol. 449, 47–54 (2002).
Klocker, N., Oliver, D., Ruppersberg, J. P., Knaus, H. G. & Fakler, B. Developmental expression of the small-conductance Ca2+-activated potassium channel SK2 in the rat retina. Mol. Cell. Neurosci. 17, 514–520 (2001).
Wang, G. Y., Olshausen, B. A. & Chalupa, L. M. Differential effects of apamin- and charybdotoxin-sensitive K+ conductances on spontaneous discharge patterns of developing retinal ganglion cells. J. Neurosci. 19, 2609–2618 (1999).
Shatz, C. J. Impulse activity and the patterning of connections during CNS development. Neuron 5, 745–756 (1990).
Glowatzki, E. & Fuchs, P. A. Cholinergic synaptic inhibition of inner hair cells in the neonatal mammalian cochlea. Science 288, 2366–2368 (2000).