CYP17A1 exhibits 17αhydroxylase/17,20-lyase activity towards 11β-hydroxyprogesterone and 11-ketoprogesterone metabolites in the C11-oxy backdoor pathway

Desmaré van Rooyen1, Rahul Yadav2,3, Emily E. Scott2,4, Amanda C. Swart1
1Biochemistry Department, Stellenbosch University, Stellenbosch 7600, South Africa
2Medicinal Chemistry Department, University of Michigan, Ann Arbor, MI 48109, United States of America
3Department of Chemistry, Mississippi State University, Mississippi State, MS 39762, United States of America
4Departments of Pharmacology and Biological Chemistry and Biophysics Program, University of Michigan, Ann Arbor, MI 48109, United States of America

Tài liệu tham khảo

Turcu, 2015, Profiles of 21-carbon steroids in 21-hydroxylase deficiency, J. Clin. Endocrinol. Metab., 100, 2283, 10.1210/jc.2015-1023 Turcu, 2016, Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency, Eur. J. Endocrinol., 174, 601, 10.1530/EJE-15-1181 Kamrath, 2012, Increased activation of the alternative ‘backdoor’ pathway in patients with 21-hydroxylase deficiency: evidence from urinary steroid hormone analysis, J. Clin. Endocrinol. Metab., 97, E367, 10.1210/jc.2011-1997 Fiet, 2017, A liquid chromatography/tandem mass spectometry profile of 16 serum steroids, including 21-deoxycortisol and 21-deoxycorticosterone, for management of congenital adrenal hyperplasia, J. Endodrine Soc., 1, 186 Homma, 2006, Urine steroid hormone profile analysis in cytochrome P450 oxidoreductase deficiency: implication for the backdoor pathway to dihydrotestosterone, J. Clin. Endocrinol. Metab., 91, 2643, 10.1210/jc.2005-2460 Du Toit, 2018, Inefficient UGT-conjugation of adrenal 11β-hydroxyandrostenedione metabolites highlights C11-oxy C19 steroids as the predominant androgens in prostate cancer, Mol. Cell. Endocrinol., 461, 265, 10.1016/j.mce.2017.09.026 Chang, 2011, Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer, Proc. Natl. Acad. Sci. U. S. A., 108, 13728, 10.1073/pnas.1107898108 Du Toit, 2020, The 11β-hydroxyandrostenedione pathway and C11-oxy C21 backdoor pathway are active in benign prostatic hyperplasia yielding 11keto-testosterone and 11keto-progesterone, J. Steroid Biochem. Mol. Biol., 196, 1, 10.1016/j.jsbmb.2019.105497 O’Reilly, 2014, Hyperandrogenemia predicts metabolic phenotype in polycystic ovary syndrome: the utility of serum androstenedione, J. Clin. Endocrinol. Metab., 99, 1027, 10.1210/jc.2013-3399 O’Reilly, 2017, 11-Oxygenated C19 steroids are the predominant androgens in polycystic ovary syndrome, J. Clin. Endocrinol. Metab., 102, 840, 10.1210/jc.2016-3285 Marti, 2017, Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome, Mol. Cell. Endocrinol., 441, 116, 10.1016/j.mce.2016.07.029 Chung, 1987, Cytochrome P450c17 (steroid 17α-hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues, Proc. Natl. Acad. Sci. U. S. A., 84, 407, 10.1073/pnas.84.2.407 Sasano, 1989, Immunolocalization of aromatase, 17α-hydroxylase and side-chain-cleavage cytochromes P-450 in the human ovary, J. Reprod. Fertil., 85, 163, 10.1530/jrf.0.0850163 Katagiri, 1995, The role of cytochrome b5 in the biosynthesis of androgens by human P450c17, Arch. Biochem. Biophys., 317, 343, 10.1006/abbi.1995.1173 Swart, 1993, Progesterone 16α-hydroxylase activity is catalyzed by human cytochrome P450 17α-hydroxylase, J. Clin. Endocrinol. Metab., 771, 98 Storbeck, 2011, 16α-Hydroxyprogesterone: origin, biosynthesis and receptor interaction, Mol. Cell. Endocrinol., 336, 92, 10.1016/j.mce.2010.11.016 Suzuki, 1993, Temporal and spatial localization of steroidogenic enzymes in premenopausal human ovaries: in situ hybridization and immunohistochemical study, Mol. Cell. Endocrinol., 97, 135, 10.1016/0303-7207(93)90220-E O’Shaughnessy, 2019, Alternative (Backdoor) androgen production and masculinization in the human fetus, PLoS Biol., 17, 1, 10.1371/journal.pbio.3000002 Reisch, 2019, Alternative pathway androgen biosynthesis and human fetal female virilization, Proc. Natl. Acad. Sci. U. S. A., 116, 22294, 10.1073/pnas.1906623116 Flück, 2011, Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation, Am. J. Hum. Genet., 89, 201, 10.1016/j.ajhg.2011.06.009 Kamrath, 2012, The activities of 5α-reductase and 17,20-lyase determine the direction through androgen synthesis pathways in patients with 21-hydroxylase deficiency, Steroids, 77, 1391, 10.1016/j.steroids.2012.08.001 Marti, 2017, Androgen production in pediatric adrenocortical tumors may occur via both the classic and/or the alternative backdoor pathway, Mol. Cell. Biochem., 452, 64 Gupta, 2003, 5α-reduced C21 steroids are substrates for human cytochrome P450c17, Arch. Biochem. Biophys., 418, 151, 10.1016/j.abb.2003.07.003 Barnard, 2017, Adrenal C11-oxy C21 steroids contribute to the C11-oxy C19 steroid pool via the backdoor pathway in the biosynthesis and metabolism of 21-deoxycortisol and 21-deoxycortisone, J. Steroid Biochem. Mol. Biol., 174, 86, 10.1016/j.jsbmb.2017.07.034 Van Rooyen, 2018, The in vitro metabolism of 11β-hydroxyprogesterone and 11- ketoprogesterone to 11-ketodihydrotestosterone in the backdoor pathway, J. Steroid Biochem. Mol. Biol., 178, 203, 10.1016/j.jsbmb.2017.12.014 Petrunak, 2014, Structures of human steroidogenic cytochrome P450 17A1 with substrates, J. Biol. Chem., 289, 32952, 10.1074/jbc.M114.610998 Friesner, 2004, Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem., 47, 1739, 10.1021/jm0306430 Li, 2011, The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling, Proteins, 79, 2794, 10.1002/prot.23106 Axelrod, 1973, Biosynthesis of 11β-hydroxyandrostenedione by the human and baboon adrenals, Acta Endocrinol. (Copenh.), 72, 545, 10.1530/acta.0.0720545 Burstein, 1953, The in vivo metabolism of cortisone, Endocrinology, 52, 448, 10.1210/endo-52-4-448 Burstein, 1953, The in vivo metabolism of hydrocortisone, Endocrinology, 53, 88, 10.1210/endo-53-1-88 Sandberg, 1957, The conversion of 4-C14-cortisol to C14-17-ketosteroids, J. Clin. Endocrinol. Metab., 17, 437, 10.1210/jcem-17-3-437 Kornel, 1975, Studies on steroid conjugates-VIII: isolation and characterization of glucuronide-conjugated metabolites of cortisol in human urine, J. Steroid Biochem., 6, 1267, 10.1016/0022-4731(75)90118-1 Zumoff, 1968, Metabolism of tetrahydrocortisone in health and disease, J. Clin. Endocrinol. Metab., 28, 1330, 10.1210/jcem-28-9-1330 Dorfman, 1954, In vivo metabolism of neutral steroid hormones, J. Clin. Endocrinol. Metab., 14, 318, 10.1210/jcem-14-3-318 Shackleton, 2008, 17-Hydroxylase/C17,20-lyase (CYP17) is not the enzyme responsible for side-chain cleavage of cortisol and its metabolites, Steroids, 73, 652, 10.1016/j.steroids.2008.02.001 Bradlow, 1968, Tetrahydrocortisol metabolism in man, Steroids, 12, 303, 10.1016/0039-128X(68)90023-8 Goldzieher, 1971, Precursors of urinary 11-oxy-17-ketosteroids. II. Allo-3α-tetrahydrocortisol, J. Clin. Endocrinol. Metab., 33, 176, 10.1210/jcem-33-2-176 Schloms, 2012, The influence of Aspalathus linearis (Rooibos) and dihydrochalcones on adrenal steroidogenesis: quantification of steroid intermediates and end products in H295R cells, J. Steroid Biochem. Mol. Biol., 128, 128, 10.1016/j.jsbmb.2011.11.003 Swart, 2010, A single amino acid residue, Ala 105, confers 16α-hydroxylase activity to human cytochrome P450 17α-hydroxylase/17,20 lyase, J. Steroid Biochem. Mol. Biol., 119, 112, 10.1016/j.jsbmb.2009.12.014 Van Rooyen, 2017, The metabolic fate and receptor interaction of 16α-hydroxyprogesterone and its 5α-reduced metabolite, 16α-hydroxy-dihydroprogesterone, Mol. Cell. Endocrinol., 441, 86, 10.1016/j.mce.2016.09.025 Devore, 2012, Cytochrome P450 17A1 structures with prostate cancer drugs abiraterone and TOK-001, Nature, 482, 116, 10.1038/nature10743 Suzuki, 2000, Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies, Clin. Endocrinol. (Oxf.), 53, 739, 10.1046/j.1365-2265.2000.01144.x Turcu, 2016, Adrenal steroidogenesis and congenital adrenal hyperplasia, Endocrinol. Metab. Clin. North Am., 44, 275, 10.1016/j.ecl.2015.02.002 Gomez-Sanchez, 2014, Development of monoclonal antibodies against human CYP11B1 and CYP11B2, Mol. Cell. Endocrinol., 383, 111, 10.1016/j.mce.2013.11.022 Shigematsu, 2008, Analysis of mRNA expression for steroidogenic enzymes in the remaining adrenal cortices attached to adrenocortical adenomas, Eur. J. Endocrinol., 158, 867, 10.1530/EJE-07-0626 Gent, 2019, 11α-Hydroxyprogesterone, a potent 11β-hydroxysteroid dehydrogenase inhibitor, is metabolised by steroid-5α-reductase and cytochrome P450 17α-hydroxylase/17,20-lyase to produce C11α-derivatives of 21-deoxycortisol and 11-hydroxyandrostenedione in vitro, J. Steroid Biochem. Mol. Biol., 191, 105369, 10.1016/j.jsbmb.2019.04.018 Gent, 2019, The 11β-hydroxysteroid dehydrogenase isoforms: pivotal catalytic activities yield potent C11-oxy C19 steroids with 11βHSD2 favouring 11-ketotestosterone, 11-ketoandrostenedione and 11-ketoprogesterone biosynthesis, J. Steroid Biochem. Mol. Biol., 189, 116, 10.1016/j.jsbmb.2019.02.013 Mostaghel, 2011, Resistance to CYP17A1 inhibition with abiraterone in castration resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants, Clin. Cancer Res., 17, 5913, 10.1158/1078-0432.CCR-11-0728 Mitsiades, 2012, Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors, Cancer Res., 72, 6142, 10.1158/0008-5472.CAN-12-1335