CYP17A1 exhibits 17αhydroxylase/17,20-lyase activity towards 11β-hydroxyprogesterone and 11-ketoprogesterone metabolites in the C11-oxy backdoor pathway
Tài liệu tham khảo
Turcu, 2015, Profiles of 21-carbon steroids in 21-hydroxylase deficiency, J. Clin. Endocrinol. Metab., 100, 2283, 10.1210/jc.2015-1023
Turcu, 2016, Adrenal-derived 11-oxygenated 19-carbon steroids are the dominant androgens in classic 21-hydroxylase deficiency, Eur. J. Endocrinol., 174, 601, 10.1530/EJE-15-1181
Kamrath, 2012, Increased activation of the alternative ‘backdoor’ pathway in patients with 21-hydroxylase deficiency: evidence from urinary steroid hormone analysis, J. Clin. Endocrinol. Metab., 97, E367, 10.1210/jc.2011-1997
Fiet, 2017, A liquid chromatography/tandem mass spectometry profile of 16 serum steroids, including 21-deoxycortisol and 21-deoxycorticosterone, for management of congenital adrenal hyperplasia, J. Endodrine Soc., 1, 186
Homma, 2006, Urine steroid hormone profile analysis in cytochrome P450 oxidoreductase deficiency: implication for the backdoor pathway to dihydrotestosterone, J. Clin. Endocrinol. Metab., 91, 2643, 10.1210/jc.2005-2460
Du Toit, 2018, Inefficient UGT-conjugation of adrenal 11β-hydroxyandrostenedione metabolites highlights C11-oxy C19 steroids as the predominant androgens in prostate cancer, Mol. Cell. Endocrinol., 461, 265, 10.1016/j.mce.2017.09.026
Chang, 2011, Dihydrotestosterone synthesis bypasses testosterone to drive castration-resistant prostate cancer, Proc. Natl. Acad. Sci. U. S. A., 108, 13728, 10.1073/pnas.1107898108
Du Toit, 2020, The 11β-hydroxyandrostenedione pathway and C11-oxy C21 backdoor pathway are active in benign prostatic hyperplasia yielding 11keto-testosterone and 11keto-progesterone, J. Steroid Biochem. Mol. Biol., 196, 1, 10.1016/j.jsbmb.2019.105497
O’Reilly, 2014, Hyperandrogenemia predicts metabolic phenotype in polycystic ovary syndrome: the utility of serum androstenedione, J. Clin. Endocrinol. Metab., 99, 1027, 10.1210/jc.2013-3399
O’Reilly, 2017, 11-Oxygenated C19 steroids are the predominant androgens in polycystic ovary syndrome, J. Clin. Endocrinol. Metab., 102, 840, 10.1210/jc.2016-3285
Marti, 2017, Genes and proteins of the alternative steroid backdoor pathway for dihydrotestosterone synthesis are expressed in the human ovary and seem enhanced in the polycystic ovary syndrome, Mol. Cell. Endocrinol., 441, 116, 10.1016/j.mce.2016.07.029
Chung, 1987, Cytochrome P450c17 (steroid 17α-hydroxylase/17,20 lyase): cloning of human adrenal and testis cDNAs indicates the same gene is expressed in both tissues, Proc. Natl. Acad. Sci. U. S. A., 84, 407, 10.1073/pnas.84.2.407
Sasano, 1989, Immunolocalization of aromatase, 17α-hydroxylase and side-chain-cleavage cytochromes P-450 in the human ovary, J. Reprod. Fertil., 85, 163, 10.1530/jrf.0.0850163
Katagiri, 1995, The role of cytochrome b5 in the biosynthesis of androgens by human P450c17, Arch. Biochem. Biophys., 317, 343, 10.1006/abbi.1995.1173
Swart, 1993, Progesterone 16α-hydroxylase activity is catalyzed by human cytochrome P450 17α-hydroxylase, J. Clin. Endocrinol. Metab., 771, 98
Storbeck, 2011, 16α-Hydroxyprogesterone: origin, biosynthesis and receptor interaction, Mol. Cell. Endocrinol., 336, 92, 10.1016/j.mce.2010.11.016
Suzuki, 1993, Temporal and spatial localization of steroidogenic enzymes in premenopausal human ovaries: in situ hybridization and immunohistochemical study, Mol. Cell. Endocrinol., 97, 135, 10.1016/0303-7207(93)90220-E
O’Shaughnessy, 2019, Alternative (Backdoor) androgen production and masculinization in the human fetus, PLoS Biol., 17, 1, 10.1371/journal.pbio.3000002
Reisch, 2019, Alternative pathway androgen biosynthesis and human fetal female virilization, Proc. Natl. Acad. Sci. U. S. A., 116, 22294, 10.1073/pnas.1906623116
Flück, 2011, Why boys will be boys: two pathways of fetal testicular androgen biosynthesis are needed for male sexual differentiation, Am. J. Hum. Genet., 89, 201, 10.1016/j.ajhg.2011.06.009
Kamrath, 2012, The activities of 5α-reductase and 17,20-lyase determine the direction through androgen synthesis pathways in patients with 21-hydroxylase deficiency, Steroids, 77, 1391, 10.1016/j.steroids.2012.08.001
Marti, 2017, Androgen production in pediatric adrenocortical tumors may occur via both the classic and/or the alternative backdoor pathway, Mol. Cell. Biochem., 452, 64
Gupta, 2003, 5α-reduced C21 steroids are substrates for human cytochrome P450c17, Arch. Biochem. Biophys., 418, 151, 10.1016/j.abb.2003.07.003
Barnard, 2017, Adrenal C11-oxy C21 steroids contribute to the C11-oxy C19 steroid pool via the backdoor pathway in the biosynthesis and metabolism of 21-deoxycortisol and 21-deoxycortisone, J. Steroid Biochem. Mol. Biol., 174, 86, 10.1016/j.jsbmb.2017.07.034
Van Rooyen, 2018, The in vitro metabolism of 11β-hydroxyprogesterone and 11- ketoprogesterone to 11-ketodihydrotestosterone in the backdoor pathway, J. Steroid Biochem. Mol. Biol., 178, 203, 10.1016/j.jsbmb.2017.12.014
Petrunak, 2014, Structures of human steroidogenic cytochrome P450 17A1 with substrates, J. Biol. Chem., 289, 32952, 10.1074/jbc.M114.610998
Friesner, 2004, Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem., 47, 1739, 10.1021/jm0306430
Li, 2011, The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling, Proteins, 79, 2794, 10.1002/prot.23106
Axelrod, 1973, Biosynthesis of 11β-hydroxyandrostenedione by the human and baboon adrenals, Acta Endocrinol. (Copenh.), 72, 545, 10.1530/acta.0.0720545
Burstein, 1953, The in vivo metabolism of cortisone, Endocrinology, 52, 448, 10.1210/endo-52-4-448
Burstein, 1953, The in vivo metabolism of hydrocortisone, Endocrinology, 53, 88, 10.1210/endo-53-1-88
Sandberg, 1957, The conversion of 4-C14-cortisol to C14-17-ketosteroids, J. Clin. Endocrinol. Metab., 17, 437, 10.1210/jcem-17-3-437
Kornel, 1975, Studies on steroid conjugates-VIII: isolation and characterization of glucuronide-conjugated metabolites of cortisol in human urine, J. Steroid Biochem., 6, 1267, 10.1016/0022-4731(75)90118-1
Zumoff, 1968, Metabolism of tetrahydrocortisone in health and disease, J. Clin. Endocrinol. Metab., 28, 1330, 10.1210/jcem-28-9-1330
Dorfman, 1954, In vivo metabolism of neutral steroid hormones, J. Clin. Endocrinol. Metab., 14, 318, 10.1210/jcem-14-3-318
Shackleton, 2008, 17-Hydroxylase/C17,20-lyase (CYP17) is not the enzyme responsible for side-chain cleavage of cortisol and its metabolites, Steroids, 73, 652, 10.1016/j.steroids.2008.02.001
Bradlow, 1968, Tetrahydrocortisol metabolism in man, Steroids, 12, 303, 10.1016/0039-128X(68)90023-8
Goldzieher, 1971, Precursors of urinary 11-oxy-17-ketosteroids. II. Allo-3α-tetrahydrocortisol, J. Clin. Endocrinol. Metab., 33, 176, 10.1210/jcem-33-2-176
Schloms, 2012, The influence of Aspalathus linearis (Rooibos) and dihydrochalcones on adrenal steroidogenesis: quantification of steroid intermediates and end products in H295R cells, J. Steroid Biochem. Mol. Biol., 128, 128, 10.1016/j.jsbmb.2011.11.003
Swart, 2010, A single amino acid residue, Ala 105, confers 16α-hydroxylase activity to human cytochrome P450 17α-hydroxylase/17,20 lyase, J. Steroid Biochem. Mol. Biol., 119, 112, 10.1016/j.jsbmb.2009.12.014
Van Rooyen, 2017, The metabolic fate and receptor interaction of 16α-hydroxyprogesterone and its 5α-reduced metabolite, 16α-hydroxy-dihydroprogesterone, Mol. Cell. Endocrinol., 441, 86, 10.1016/j.mce.2016.09.025
Devore, 2012, Cytochrome P450 17A1 structures with prostate cancer drugs abiraterone and TOK-001, Nature, 482, 116, 10.1038/nature10743
Suzuki, 2000, Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex: immunohistochemical studies, Clin. Endocrinol. (Oxf.), 53, 739, 10.1046/j.1365-2265.2000.01144.x
Turcu, 2016, Adrenal steroidogenesis and congenital adrenal hyperplasia, Endocrinol. Metab. Clin. North Am., 44, 275, 10.1016/j.ecl.2015.02.002
Gomez-Sanchez, 2014, Development of monoclonal antibodies against human CYP11B1 and CYP11B2, Mol. Cell. Endocrinol., 383, 111, 10.1016/j.mce.2013.11.022
Shigematsu, 2008, Analysis of mRNA expression for steroidogenic enzymes in the remaining adrenal cortices attached to adrenocortical adenomas, Eur. J. Endocrinol., 158, 867, 10.1530/EJE-07-0626
Gent, 2019, 11α-Hydroxyprogesterone, a potent 11β-hydroxysteroid dehydrogenase inhibitor, is metabolised by steroid-5α-reductase and cytochrome P450 17α-hydroxylase/17,20-lyase to produce C11α-derivatives of 21-deoxycortisol and 11-hydroxyandrostenedione in vitro, J. Steroid Biochem. Mol. Biol., 191, 105369, 10.1016/j.jsbmb.2019.04.018
Gent, 2019, The 11β-hydroxysteroid dehydrogenase isoforms: pivotal catalytic activities yield potent C11-oxy C19 steroids with 11βHSD2 favouring 11-ketotestosterone, 11-ketoandrostenedione and 11-ketoprogesterone biosynthesis, J. Steroid Biochem. Mol. Biol., 189, 116, 10.1016/j.jsbmb.2019.02.013
Mostaghel, 2011, Resistance to CYP17A1 inhibition with abiraterone in castration resistant prostate cancer: induction of steroidogenesis and androgen receptor splice variants, Clin. Cancer Res., 17, 5913, 10.1158/1078-0432.CCR-11-0728
Mitsiades, 2012, Distinct patterns of dysregulated expression of enzymes involved in androgen synthesis and metabolism in metastatic prostate cancer tumors, Cancer Res., 72, 6142, 10.1158/0008-5472.CAN-12-1335