CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus

Nature - Tập 405 Số 6785 - Trang 486-489 - 2000
Amy T. Hark1, Christopher J. Schoenherr2, David J. Katz2, Robert S. Ingram2, John Levorse2, Shirley M. Tilghman2
1Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, New Jersey 08544, USA.
2Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, Princeton, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Leighton, P. A., Ingram, R. S., Eggenschwiler, J., Efstratiadis, A. & Tilghman, S. M. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375, 34–39 (1995).

Thorvaldson, J. L., Duran, K. L. & Bartolomei, M. S. Deletion of the H19 differentially methylated domain results in loss of imprinted expression of H10 and Igf2. Genes Dev. 12, 3693–3702 (1998).

Bartolomei, M. S., Webber, A. L., Brunkow, M. E. & Tilghman, S. M. Epigenetic mechanisms underlying the imprinting of the mouse H19 gene. Genes Dev. 7, 1663–1673 (1993).

Ferguson-Smith, A. C., Sasaki, H., Cattanach, B. M. & Surani, M. A. Parental-origin-specific epigenetic modifications of the mouse H19 gene. Nature 362, 751–755 (1993).

Webber, A., Ingram, R. I., Levorse, J. & Tilghman, S. M. Location of enhancers is essential for imprinting of H19 and Igf2 . Nature 391, 711–715 (1998).

Hark, A. T. & Tilghman, S. M. Chromatin conformation of the H19 epigenetic mark. Hum. Mol. Genet. 7, 1979–1985 (1998).

Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396 (1999).

Kellum, R. & Schedl, P. A position-effect assay for boundaries of higher order chromosomal domains. Cell 64, 941–950 (1991).

Kellum, R. & Schedl, P. A group of scs elements function as domain boundaries in an enhancer-blocking assay. Mol. Cell. Biol. 12, 2424–2431 ( 1992).

Kellum, R. & Elgin, S. C. R. Chromatin boundaries: punctuating the genome. Curr. Biol. 8, R521– R524 (1998).

Khosla, S., Aitchison, A., Gregory, R., Allen, N. D. & Fell, R. Parental allele-specific chromatin configuration in a boundary-imprinting-control element upstream of the mouse H19 gene. Mol. Cell. Biol. 19, 2556– 2566 (1999).

Elson, D. A. & Bartolomei, M. S. A 5′ differentially methylated sequence and the 3′ flanking region are necessary for H19 transgene imprinting. Mol. Cell. Biol. 17, 309–317 (1997).

Pfeifer, K., Leighton, P. A. & Tilghman, S. M. The structural H19 gene is required for its own imprinting. Proc. Natl Acad. Sci. USA 93, 13876–13883 (1996).

Frevel, M. A., Hornberg, J. J. & Reeve, A. E. A potential imprint control element: identification of a conserved 42 bp sequence upstream of H19. Trends Genet. 15, 216–218 ( 1999).

Stadnick, M. P. et al. Role of a 461-bp G-rich repetitive element in H19 transgene imprinting. Dev. Genes Evol. 209, 239– 248 (1999).

Filippova, G. N. et al. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol. Cell. Biol. 16, 2802–2813 (1996).

Vostrov, A. A. & Quitschke, W. W. The zinc finger protein CTCF binds to the APBβ domain of the amyloid β-protein precursor promoter. Evidence for a role in transcriptional activation. J. Biol. Chem. 272, 33353–33359 (1997).

Burcin, M. et al. Negative protein 1, which is required for function of the chicken lysozyme gene silencer in conjunction with hormone-receptors, is identical to the multivalent zinc finger repressor CTCF. Mol. Cell. Biol. 17, 1281–1288 ( 1997).

Awad, T. A. et al. Negative transcriptional regulation mediated by thyroid hormone response element 144 requires binding of the multivalent factor CTCF to a novel target DNA sequence. J. Biol. Chem. 274, 27092–27098 (1999).

Bird, A. P. & Wolffe, A. P. Methylation-induced repression—belts, braces, and chromatin. Cell 99, 451– 454 (1999).

Macleod, D., Charlton, J., Mullins, J. & Bird, A. P. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8, 2282– 2292 (1994).

Brandeis, M. et al. Sp1 elements protect a CpG island from de novo methylation. Nature 371, 435–438 (1994).

Bell, A. C. & Felsenfeld, G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 405, 482–485 ( 2000).

Szabo, P. E., Pfeifer, G. P. & Mann, J. R. Characterization of novel parent-specific epigenetic modifications upstream of the imprinted mouse H19 gene. Mol. Cell. Biol. 18, 6767–6776 (1998).

Feil, R. & Khosla, S. Genomic imprinting in mammals: an interplay between chromatin and DNA methylation? Trends Genet. 15, 431–435 ( 1999).

Auffray, C. & Rougeon, F. Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107, 303–314 ( 1980).

Leighton, P. A., Saam, J. R., Ingram, R. S., Stewart, C. L. & Tilghman, S. M. An enhancer deletion affects both H19 and Ifg2 expression. Genes Dev. 9, 2079–2089 (1995).

Hagenbuchle, O. & Wellauer, P. K. A rapid method for the isolation of DNA-binding proteins from purified nuclei of tissues and cells in culture. Nucleic Acids Res. 20, 3555–2559 (1992).