CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Michalski JM, Yan Y, Watkins-Bruner D, Bosch WR, Winter K, Galvin JM, Bahary JP, Morton GC, Parliament MB, Sandler HM (2013) Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. Int J Radiat Oncol Biol Phys 87(5):932–938. https://doi.org/10.1016/j.ijrobp.2013.07.041
Mohammed N, Kestin L, Ghilezan M, Krauss D, Vicini F, Brabbins D, Gustafson G, Ye H, Martinez A (2012) Comparison of acute and late toxicities for three modern high-dose radiation treatment techniques for localized prostate cancer. Int J Radiat Oncol Biol Phys 82(1):204–212. https://doi.org/10.1016/j.ijrobp.2010.10.009
Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO (2010) Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys 76(3 Suppl):S123–S129. https://doi.org/10.1016/j.ijrobp.2009.03.078
Thor M, Olsson C, Oh JH, Petersen SE, Alsadius D, Bentzen L, Pettersson N, Muren LP, Hoyer M, Steineck G, Deasy JO (2016) Urinary bladder dose-response relationships for patient-reported genitourinary morbidity domains following prostate cancer radiotherapy. Radiother Oncol 119(1):117–122. https://doi.org/10.1016/j.radonc.2016.01.013
Viswanathan AN, Yorke ED, Marks LB, Eifel PJ, Shipley WU (2010) Radiation dose-volume effects of the urinary bladder. Int J Radiat Oncol Biol Phys 76(3 Suppl):S116–S122. https://doi.org/10.1016/j.ijrobp.2009.02.090
Fahrig A, Koch T, Lenhart M, Rieckmann P, Fietkau R, Distel L, Schuster B (2018) Lethal outcome after pelvic salvage radiotherapy in a patient with prostate cancer due to increased radiosensitivity: case report and literature review. Strahlenther Onkol 194(1):60–66. https://doi.org/10.1007/s00066-017-1207-9
El Naqa I, Kerns SL, Coates J, Luo Y, Speers C, West CML, Rosenstein BS, Ten Haken RK (2017) Radiogenomics and radiotherapy response modeling. Phys Med Biol 62(16):R179–R206. https://doi.org/10.1088/1361-6560/aa7c55
Abdollahi H, Moid B, Shiri I, Razzaghdoust A, Saadipoor A, Mahdavi A, Galandooz HM, Mahdavi SR (2019) Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol Med. https://doi.org/10.1007/s11547-018-0966-4
Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 70(2):232–241. https://doi.org/10.1016/j.ejrad.2009.01.050
Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2(12):1636–1642. https://doi.org/10.1001/jamaoncol.2016.2631
Liew C (2018) The future of radiology augmented with artificial intelligence: a strategy for success. Eur J Radiol 102:152–156. https://doi.org/10.1016/j.ejrad.2018.03.019
Fazal MI, Patel ME, Tye J, Gupta Y (2018) The past, present and future role of artificial intelligence in imaging. Eur J Radiol 105:246–250. https://doi.org/10.1016/j.ejrad.2018.06.020
Abdollahi H, Mahdavi SR, Mofid B, Bakhshandeh M, Razzaghdoust A, Saadipoor A, Tanha K (2018) Rectal wall MRI radiomics in prostate cancer patients: prediction of and correlation with early rectal toxicity. Int J Radiat Biol 94(9):829–837. https://doi.org/10.1080/09553002.2018.1492756
Abdollahi H, Tanha K, Mofid B, Razzaghdoust A, Saadipoor A, Khalafi L, Bakhshandeh M, Mahdavi SR (2019) MRI radiomic analysis of IMRT-induced bladder wall changes in prostate cancer patients: a relationship with radiation dose and toxicity. J Med Imaging Radiat Sci. https://doi.org/10.1016/j.jmir.2018.12.002
Moran A, Daly ME, Yip SSF, Yamamoto T (2017) Radiomics-based assessment of radiation-induced lung injury after stereotactic body radiotherapy. Clin Lung Cancer 18(6):e425–e431. https://doi.org/10.1016/j.cllc.2017.05.014
Abdollahi H, Mostafaei S, Cheraghi S, Shiri I, Rabi Mahdavi S, Kazemnejad A (2018) Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: a machine learning and multi-variable modelling study. Phys Med 45:192–197. https://doi.org/10.1016/j.ejmp.2017.10.008
Wu H, Chen X, Yang X, Tao Y, Xia Y, Deng X, Zheng C, Robbins J, Schultz C, Li XA (2018) Early Prediction of acute xerostomia during radiation therapy for head and neck cancer based on texture analysis of daily CT. Int J Radiat Oncol Biol Phys 102(4):1308–1318. https://doi.org/10.1016/j.ijrobp.2018.04.059
Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259. https://doi.org/10.1016/S0893-6080(05)80023-1
Kim J-H (2009) Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap. Comput Stat Data Anal 53(11):3735–3745
Kalousis A, Prados J, Hilario M (2007) Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inf Syst 12(1):95–116
Rodriguez JD, Perez A, Lozano JA (2010) Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell 32(3):569–575
van Dijk LV, Brouwer CL, van der Laan HP, Burgerhof JGM, Langendijk JA, Steenbakkers R, Sijtsema NM (2017) Geometric image biomarker changes of the parotid gland are associated with late xerostomia. Int J Radiat Oncol Biol Phys 99(5):1101–1110. https://doi.org/10.1016/j.ijrobp.2017.08.003
van Dijk LV, Brouwer CL, van der Schaaf A, Burgerhof JGM, Beukinga RJ, Langendijk JA, Sijtsema NM, Steenbakkers R (2017) CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva. Radiother Oncol 122(2):185–191. https://doi.org/10.1016/j.radonc.2016.07.007
Gabrys HS, Buettner F, Sterzing F, Hauswald H, Bangert M (2018) Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front Oncol 8:35. https://doi.org/10.3389/fonc.2018.00035
King MA (2015) Ensemble learning techniques for structured and unstructured data. Virginia Tech
Džeroski S, Ženko B (2004) Is combining classifiers with stacking better than selecting the best one? Mach Learn 54(3):255–273
Coates J, El Naqa I (2016) Outcome modeling techniques for prostate cancer radiotherapy: data, models, and validation. Phys Med 32(3):512–520
Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27(11):4498–4509. https://doi.org/10.1007/s00330-017-4859-z
Shiri I, Abdollahi H, Shaysteh S, Rabi Mahdavi S (2017) Test-retest reproducibility and robustness analysis of recurrent glioblastoma MRI radiomics texture features. Iran J Radiol. https://doi.org/10.5812/iranjradiol.48035
Saeedi E, Dezhkam A, Beigi J, Rastegar S, Yousefi Z, Mehdipour LA, Abdollahi H, Tanha K (2018) Radiomic feature robustness and reproducibility in quantitative bone radiography: a study on radiologic parameter changes. J Clin Densitom. https://doi.org/10.1016/j.jocd.2018.06.004
Abdollahi H, Mahdavi SR, Shiri I, Mofid B, Bakhshandeh M, Rahmani K (2019) Magnetic resonance imaging radiomic feature analysis of radiation-induced femoral head changes in prostate cancer radiotherapy. J Cancer Res Ther 15(1):S9–S11
Abdollahi H, Shiri I, Heydari M (2019) Medical imaging technologists in radiomics era: an alice in wonderland problem. Iran J Pub Health 48(1):184