CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm

La radiologia medica - Tập 125 Số 1 - Trang 87-97 - 2020
Shayan Mostafaei1,2, Hamid Abdollahi3, Shiva Kazempour Dehkordi4, Isaac Shiri5, Abolfazl Razzaghdoust6, Seyed Hamid Zoljalali Moghaddam7, Afshin Saadipoor8, Fereshteh Koosha9, Susan Cheraghi10, Seied Rabi Mahdavi7
1Department of Community Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
2Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
3Department of Radiologic Sciences and Medical Physics, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
4Department of Cell Systems and Anatomy, School of Medicine, University of Texas Health Science Center, San Antonio, USA
5Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, Geneva, Switzerland
6Urology and Nephrology Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
7Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
8Department of Radiation Oncology, Faculty of Medicine, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
9Radiology Technology Department, Allied Medical Faculty, Shahid Beheshti University of Medical Sciences, Tehran, Iran
10Department of Radiation Sciences, Allied Medicine Faculty, Iran University of Medical Sciences, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Michalski JM, Yan Y, Watkins-Bruner D, Bosch WR, Winter K, Galvin JM, Bahary JP, Morton GC, Parliament MB, Sandler HM (2013) Preliminary toxicity analysis of 3-dimensional conformal radiation therapy versus intensity modulated radiation therapy on the high-dose arm of the Radiation Therapy Oncology Group 0126 prostate cancer trial. Int J Radiat Oncol Biol Phys 87(5):932–938. https://doi.org/10.1016/j.ijrobp.2013.07.041

Mohammed N, Kestin L, Ghilezan M, Krauss D, Vicini F, Brabbins D, Gustafson G, Ye H, Martinez A (2012) Comparison of acute and late toxicities for three modern high-dose radiation treatment techniques for localized prostate cancer. Int J Radiat Oncol Biol Phys 82(1):204–212. https://doi.org/10.1016/j.ijrobp.2010.10.009

Michalski JM, Gay H, Jackson A, Tucker SL, Deasy JO (2010) Radiation dose-volume effects in radiation-induced rectal injury. Int J Radiat Oncol Biol Phys 76(3 Suppl):S123–S129. https://doi.org/10.1016/j.ijrobp.2009.03.078

Thor M, Olsson C, Oh JH, Petersen SE, Alsadius D, Bentzen L, Pettersson N, Muren LP, Hoyer M, Steineck G, Deasy JO (2016) Urinary bladder dose-response relationships for patient-reported genitourinary morbidity domains following prostate cancer radiotherapy. Radiother Oncol 119(1):117–122. https://doi.org/10.1016/j.radonc.2016.01.013

Viswanathan AN, Yorke ED, Marks LB, Eifel PJ, Shipley WU (2010) Radiation dose-volume effects of the urinary bladder. Int J Radiat Oncol Biol Phys 76(3 Suppl):S116–S122. https://doi.org/10.1016/j.ijrobp.2009.02.090

Fahrig A, Koch T, Lenhart M, Rieckmann P, Fietkau R, Distel L, Schuster B (2018) Lethal outcome after pelvic salvage radiotherapy in a patient with prostate cancer due to increased radiosensitivity: case report and literature review. Strahlenther Onkol 194(1):60–66. https://doi.org/10.1007/s00066-017-1207-9

El Naqa I, Kerns SL, Coates J, Luo Y, Speers C, West CML, Rosenstein BS, Ten Haken RK (2017) Radiogenomics and radiotherapy response modeling. Phys Med Biol 62(16):R179–R206. https://doi.org/10.1088/1361-6560/aa7c55

Abdollahi H, Moid B, Shiri I, Razzaghdoust A, Saadipoor A, Mahdavi A, Galandooz HM, Mahdavi SR (2019) Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer. Radiol Med. https://doi.org/10.1007/s11547-018-0966-4

Rutman AM, Kuo MD (2009) Radiogenomics: creating a link between molecular diagnostics and diagnostic imaging. Eur J Radiol 70(2):232–241. https://doi.org/10.1016/j.ejrad.2009.01.050

Aerts HJ (2016) The potential of radiomic-based phenotyping in precision medicine: a review. JAMA Oncol 2(12):1636–1642. https://doi.org/10.1001/jamaoncol.2016.2631

Liew C (2018) The future of radiology augmented with artificial intelligence: a strategy for success. Eur J Radiol 102:152–156. https://doi.org/10.1016/j.ejrad.2018.03.019

Fazal MI, Patel ME, Tye J, Gupta Y (2018) The past, present and future role of artificial intelligence in imaging. Eur J Radiol 105:246–250. https://doi.org/10.1016/j.ejrad.2018.06.020

Abdollahi H, Mahdavi SR, Mofid B, Bakhshandeh M, Razzaghdoust A, Saadipoor A, Tanha K (2018) Rectal wall MRI radiomics in prostate cancer patients: prediction of and correlation with early rectal toxicity. Int J Radiat Biol 94(9):829–837. https://doi.org/10.1080/09553002.2018.1492756

Abdollahi H, Tanha K, Mofid B, Razzaghdoust A, Saadipoor A, Khalafi L, Bakhshandeh M, Mahdavi SR (2019) MRI radiomic analysis of IMRT-induced bladder wall changes in prostate cancer patients: a relationship with radiation dose and toxicity. J Med Imaging Radiat Sci. https://doi.org/10.1016/j.jmir.2018.12.002

Moran A, Daly ME, Yip SSF, Yamamoto T (2017) Radiomics-based assessment of radiation-induced lung injury after stereotactic body radiotherapy. Clin Lung Cancer 18(6):e425–e431. https://doi.org/10.1016/j.cllc.2017.05.014

Abdollahi H, Mostafaei S, Cheraghi S, Shiri I, Rabi Mahdavi S, Kazemnejad A (2018) Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: a machine learning and multi-variable modelling study. Phys Med 45:192–197. https://doi.org/10.1016/j.ejmp.2017.10.008

Wu H, Chen X, Yang X, Tao Y, Xia Y, Deng X, Zheng C, Robbins J, Schultz C, Li XA (2018) Early Prediction of acute xerostomia during radiation therapy for head and neck cancer based on texture analysis of daily CT. Int J Radiat Oncol Biol Phys 102(4):1308–1318. https://doi.org/10.1016/j.ijrobp.2018.04.059

Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259. https://doi.org/10.1016/S0893-6080(05)80023-1

Kim J-H (2009) Estimating classification error rate: repeated cross-validation, repeated hold-out and bootstrap. Comput Stat Data Anal 53(11):3735–3745

Kalousis A, Prados J, Hilario M (2007) Stability of feature selection algorithms: a study on high-dimensional spaces. Knowl Inf Syst 12(1):95–116

Rodriguez JD, Perez A, Lozano JA (2010) Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans Pattern Anal Mach Intell 32(3):569–575

van Dijk LV, Brouwer CL, van der Laan HP, Burgerhof JGM, Langendijk JA, Steenbakkers R, Sijtsema NM (2017) Geometric image biomarker changes of the parotid gland are associated with late xerostomia. Int J Radiat Oncol Biol Phys 99(5):1101–1110. https://doi.org/10.1016/j.ijrobp.2017.08.003

van Dijk LV, Brouwer CL, van der Schaaf A, Burgerhof JGM, Beukinga RJ, Langendijk JA, Sijtsema NM, Steenbakkers R (2017) CT image biomarkers to improve patient-specific prediction of radiation-induced xerostomia and sticky saliva. Radiother Oncol 122(2):185–191. https://doi.org/10.1016/j.radonc.2016.07.007

Gabrys HS, Buettner F, Sterzing F, Hauswald H, Bangert M (2018) Design and selection of machine learning methods using radiomics and dosiomics for normal tissue complication probability modeling of xerostomia. Front Oncol 8:35. https://doi.org/10.3389/fonc.2018.00035

King MA (2015) Ensemble learning techniques for structured and unstructured data. Virginia Tech

Džeroski S, Ženko B (2004) Is combining classifiers with stacking better than selecting the best one? Mach Learn 54(3):255–273

Coates J, El Naqa I (2016) Outcome modeling techniques for prostate cancer radiotherapy: data, models, and validation. Phys Med 32(3):512–520

Shiri I, Rahmim A, Ghaffarian P, Geramifar P, Abdollahi H, Bitarafan-Rajabi A (2017) The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies. Eur Radiol 27(11):4498–4509. https://doi.org/10.1007/s00330-017-4859-z

Shiri I, Abdollahi H, Shaysteh S, Rabi Mahdavi S (2017) Test-retest reproducibility and robustness analysis of recurrent glioblastoma MRI radiomics texture features. Iran J Radiol. https://doi.org/10.5812/iranjradiol.48035

Saeedi E, Dezhkam A, Beigi J, Rastegar S, Yousefi Z, Mehdipour LA, Abdollahi H, Tanha K (2018) Radiomic feature robustness and reproducibility in quantitative bone radiography: a study on radiologic parameter changes. J Clin Densitom. https://doi.org/10.1016/j.jocd.2018.06.004

Abdollahi H, Mahdavi SR, Shiri I, Mofid B, Bakhshandeh M, Rahmani K (2019) Magnetic resonance imaging radiomic feature analysis of radiation-induced femoral head changes in prostate cancer radiotherapy. J Cancer Res Ther 15(1):S9–S11

Abdollahi H, Shiri I, Heydari M (2019) Medical imaging technologists in radiomics era: an alice in wonderland problem. Iran J Pub Health 48(1):184

Wang G, Hao J, Ma J, Jiang H (2011) A comparative assessment of ensemble learning for credit scoring. Expert Syst Appl 38(1):223–230