CRISPR-mediated host genomic DNA damage is efficiently repaired through microhomology-mediated end joining in Zymomonas mobilis
Tài liệu tham khảo
Arslan, 2014, Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system, Nucleic Acids Res., 42, 7884, 10.1093/nar/gku510
Barrangou, 2007, CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709, 10.1126/science.1138140
Bernheim, 2017, Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria, Nat. Commun., 8, 2094, 10.1038/s41467-017-02350-1
Brenac, 2019, Distinct functional roles for hopanoid composition in the chemical tolerance of Zymomonas mobilis, Mol. Microbiol., 112, 1564, 10.1111/mmi.14380
Brouns, 2008, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, 321, 960, 10.1126/science.1159689
Csorgo, 2020, A compact Cascade-Cas3 system for targeted genome engineering, Nat. Methods, 17, 1183, 10.1038/s41592-020-00980-w
Datsenko, 2012, Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system, Nat. Commun., 3, 945, 10.1038/ncomms1937
Deveau, 2008, Phage response to CRISPR-encoded resistance in Streptococcus thermophilus, J. Bacteriol., 190, 1390, 10.1128/JB.01412-07
Dillard, 2018, Assembly and translocation of a CRISPR-Cas primed acquisition complex, Cell, 175, 934, 10.1016/j.cell.2018.09.039
Fineran, 2012, Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information, Virology, 434, 202, 10.1016/j.virol.2012.10.003
Fineran, 2014, Degenerate target sites mediate rapid primed CRISPR adaptation, Proc. Natl. Acad. Sci. U. S. A., 111, E1629, 10.1073/pnas.1400071111
Jackson, 2017, CRISPR-Cas: adapting to change, Science, 356, 10.1126/science.aal5056
Kerr, 2011, DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4, Appl. Microbiol. Biotechnol., 89, 761, 10.1007/s00253-010-2936-1
Künne, 2016, Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation, Mol. Cell, 63, 852, 10.1016/j.molcel.2016.07.011
Lee, 2006, Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli, J. Biotechnol., 123, 273, 10.1016/j.jbiotec.2005.11.014
Levy, 2015, CRISPR adaptation biases explain preference for acquisition of foreign DNA, Nature, 520, 505, 10.1038/nature14302
Li, 2014, Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation, Nucleic Acids Res., 42, 7226, 10.1093/nar/gku389
Li, 2014, Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process, Nucleic Acids Res., 42, 2483, 10.1093/nar/gkt1154
Liu, 2015, Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition, Nucleic Acids Res., 43, 1044, 10.1093/nar/gku1383
Liu, 2020, A CRISPR-associated factor Csa3a regulates DNA damage repair in Crenarchaeon Sulfolobus islandicus, Nucleic Acids Res., 48, 9681, 10.1093/nar/gkaa694
Marraffini, 2008, CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA, Science, 322, 1843, 10.1126/science.1165771
Mojica, 2009, Short motif sequences determine the targets of the prokaryotic CRISPR defence system, Microbiology, 155, 733, 10.1099/mic.0.023960-0
Pecoraro, 2011, Quantification of ploidy in proteobacteria revealed the existence of monoploid, (mero-)oligoploid and polyploid species, PloS One, 6, 10.1371/journal.pone.0016392
Richter, 2014, Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer, Nucleic Acids Res., 42, 8516, 10.1093/nar/gku527
Savitskaya, 2013, High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli, RNA Biol., 10, 716, 10.4161/rna.24325
Semenova, 2011, Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence, Proc. Natl. Acad. Sci. U. S. A., 108, 10098, 10.1073/pnas.1104144108
Sfeir, 2015, Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway?, Trends Biochem. Sci., 40, 701, 10.1016/j.tibs.2015.08.006
Staals, 2016, Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system, Nat. Commun., 7, 12853, 10.1038/ncomms12853
Stachler, 2017, High tolerance to self-targeting of the genome by the endogenous CRISPR-Cas system in an archaeon, Nucleic Acids Res., 45, 5208, 10.1093/nar/gkx150
Sun, 2018, A CRISPR-Cpf1-assisted non-homologous end joining genome editing system of Mycobacterium smegmatis, Biotechnol. J., 13, 10.1002/biot.201700588
Swarts, 2012, CRISPR interference directs strand specific spacer acquisition, PloS One, 7, 10.1371/journal.pone.0035888
van der Oost, 2009, CRISPR-based adaptive and heritable immunity in prokaryotes, Trends Biochem. Sci., 34, 401, 10.1016/j.tibs.2009.05.002
Vercoe, 2013, Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands, PLoS Genet., 9, 10.1371/journal.pgen.1003454
Watson, 2019, Different genetic and morphological outcomes for phages targeted by single or multiple CRISPR-Cas spacers, Phil. Trans. Roy. Soc. Lond. B Biol. Sci., 374, 20180090, 10.1098/rstb.2018.0090
Wei, 2015, Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation, Genes Dev., 29, 356, 10.1101/gad.257550.114
Westra, 2012, The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity, Annu. Rev. Genet., 46, 311, 10.1146/annurev-genet-110711-155447
Yang, 2016, Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars, Biotechnol. Biofuels, 9, 189, 10.1186/s13068-016-0606-y
Yeh, 2019, Advances in genome editing through control of DNA repair pathways, Nat. Cell Biol., 21, 1468, 10.1038/s41556-019-0425-z
Yosef, 2012, Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli, Nucleic Acids Res., 40, 5569, 10.1093/nar/gks216
Zhang, 2019, Cas4 nucleases can effect specific integration of CRISPR spacers, J. Bacteriol., 201, e00718, 10.1128/JB.00747-18
Zheng, 2019, Characterization and repurposing of the endogenous Type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering, Nucleic Acids Res., 47, 11461, 10.1093/nar/gkz940