CRISPR-mediated host genomic DNA damage is efficiently repaired through microhomology-mediated end joining in Zymomonas mobilis

Journal of Genetics and Genomics - Tập 48 - Trang 115-122 - 2021
Xiaojie Wang1, Bo Wu2, Xin Sui1, Zhufeng Zhang1, Tao Liu1, Yingjun Li1, Guoquan Hu2, Mingxiong He2, Nan Peng1,2
1State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
2Key Laboratory of Development and Application of Rural Renewable Energy (Ministry of Agriculture), Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, Sichuan 610041, China

Tài liệu tham khảo

Arslan, 2014, Detection and characterization of spacer integration intermediates in type I-E CRISPR-Cas system, Nucleic Acids Res., 42, 7884, 10.1093/nar/gku510 Barrangou, 2007, CRISPR provides acquired resistance against viruses in prokaryotes, Science, 315, 1709, 10.1126/science.1138140 Bernheim, 2017, Inhibition of NHEJ repair by type II-A CRISPR-Cas systems in bacteria, Nat. Commun., 8, 2094, 10.1038/s41467-017-02350-1 Brenac, 2019, Distinct functional roles for hopanoid composition in the chemical tolerance of Zymomonas mobilis, Mol. Microbiol., 112, 1564, 10.1111/mmi.14380 Brouns, 2008, Small CRISPR RNAs guide antiviral defense in prokaryotes, Science, 321, 960, 10.1126/science.1159689 Csorgo, 2020, A compact Cascade-Cas3 system for targeted genome engineering, Nat. Methods, 17, 1183, 10.1038/s41592-020-00980-w Datsenko, 2012, Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system, Nat. Commun., 3, 945, 10.1038/ncomms1937 Deveau, 2008, Phage response to CRISPR-encoded resistance in Streptococcus thermophilus, J. Bacteriol., 190, 1390, 10.1128/JB.01412-07 Dillard, 2018, Assembly and translocation of a CRISPR-Cas primed acquisition complex, Cell, 175, 934, 10.1016/j.cell.2018.09.039 Fineran, 2012, Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information, Virology, 434, 202, 10.1016/j.virol.2012.10.003 Fineran, 2014, Degenerate target sites mediate rapid primed CRISPR adaptation, Proc. Natl. Acad. Sci. U. S. A., 111, E1629, 10.1073/pnas.1400071111 Jackson, 2017, CRISPR-Cas: adapting to change, Science, 356, 10.1126/science.aal5056 Kerr, 2011, DNA restriction-modification systems in the ethanologen, Zymomonas mobilis ZM4, Appl. Microbiol. Biotechnol., 89, 761, 10.1007/s00253-010-2936-1 Künne, 2016, Cas3-derived target DNA degradation fragments fuel primed CRISPR adaptation, Mol. Cell, 63, 852, 10.1016/j.molcel.2016.07.011 Lee, 2006, Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli, J. Biotechnol., 123, 273, 10.1016/j.jbiotec.2005.11.014 Levy, 2015, CRISPR adaptation biases explain preference for acquisition of foreign DNA, Nature, 520, 505, 10.1038/nature14302 Li, 2014, Haloarcula hispanica CRISPR authenticates PAM of a target sequence to prime discriminative adaptation, Nucleic Acids Res., 42, 7226, 10.1093/nar/gku389 Li, 2014, Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process, Nucleic Acids Res., 42, 2483, 10.1093/nar/gkt1154 Liu, 2015, Transcriptional regulator-mediated activation of adaptation genes triggers CRISPR de novo spacer acquisition, Nucleic Acids Res., 43, 1044, 10.1093/nar/gku1383 Liu, 2020, A CRISPR-associated factor Csa3a regulates DNA damage repair in Crenarchaeon Sulfolobus islandicus, Nucleic Acids Res., 48, 9681, 10.1093/nar/gkaa694 Marraffini, 2008, CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA, Science, 322, 1843, 10.1126/science.1165771 Mojica, 2009, Short motif sequences determine the targets of the prokaryotic CRISPR defence system, Microbiology, 155, 733, 10.1099/mic.0.023960-0 Pecoraro, 2011, Quantification of ploidy in proteobacteria revealed the existence of monoploid, (mero-)oligoploid and polyploid species, PloS One, 6, 10.1371/journal.pone.0016392 Richter, 2014, Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer, Nucleic Acids Res., 42, 8516, 10.1093/nar/gku527 Savitskaya, 2013, High-throughput analysis of type I-E CRISPR/Cas spacer acquisition in E. coli, RNA Biol., 10, 716, 10.4161/rna.24325 Semenova, 2011, Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence, Proc. Natl. Acad. Sci. U. S. A., 108, 10098, 10.1073/pnas.1104144108 Sfeir, 2015, Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway?, Trends Biochem. Sci., 40, 701, 10.1016/j.tibs.2015.08.006 Staals, 2016, Interference-driven spacer acquisition is dominant over naive and primed adaptation in a native CRISPR-Cas system, Nat. Commun., 7, 12853, 10.1038/ncomms12853 Stachler, 2017, High tolerance to self-targeting of the genome by the endogenous CRISPR-Cas system in an archaeon, Nucleic Acids Res., 45, 5208, 10.1093/nar/gkx150 Sun, 2018, A CRISPR-Cpf1-assisted non-homologous end joining genome editing system of Mycobacterium smegmatis, Biotechnol. J., 13, 10.1002/biot.201700588 Swarts, 2012, CRISPR interference directs strand specific spacer acquisition, PloS One, 7, 10.1371/journal.pone.0035888 van der Oost, 2009, CRISPR-based adaptive and heritable immunity in prokaryotes, Trends Biochem. Sci., 34, 401, 10.1016/j.tibs.2009.05.002 Vercoe, 2013, Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands, PLoS Genet., 9, 10.1371/journal.pgen.1003454 Watson, 2019, Different genetic and morphological outcomes for phages targeted by single or multiple CRISPR-Cas spacers, Phil. Trans. Roy. Soc. Lond. B Biol. Sci., 374, 20180090, 10.1098/rstb.2018.0090 Wei, 2015, Cas9 function and host genome sampling in Type II-A CRISPR-Cas adaptation, Genes Dev., 29, 356, 10.1101/gad.257550.114 Westra, 2012, The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity, Annu. Rev. Genet., 46, 311, 10.1146/annurev-genet-110711-155447 Yang, 2016, Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars, Biotechnol. Biofuels, 9, 189, 10.1186/s13068-016-0606-y Yeh, 2019, Advances in genome editing through control of DNA repair pathways, Nat. Cell Biol., 21, 1468, 10.1038/s41556-019-0425-z Yosef, 2012, Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli, Nucleic Acids Res., 40, 5569, 10.1093/nar/gks216 Zhang, 2019, Cas4 nucleases can effect specific integration of CRISPR spacers, J. Bacteriol., 201, e00718, 10.1128/JB.00747-18 Zheng, 2019, Characterization and repurposing of the endogenous Type I-F CRISPR-Cas system of Zymomonas mobilis for genome engineering, Nucleic Acids Res., 47, 11461, 10.1093/nar/gkz940