CRISPR Craze to Transform Cardiac Biology

Trends in Molecular Medicine - Tập 25 - Trang 791-802 - 2019
Sebastiaan Johannes van Kampen1, Eva van Rooij1,2
1Hubrecht Institute–KNAW and University Medical Center, Utrecht, The Netherlands
2Department of Cardiology, University Medical Center Utrecht, the Netherlands

Tài liệu tham khảo

Heidenreich, 2016, Applications of CRISPR-Cas systems in neuroscience, Nat. Rev. Neurosci., 17, 36, 10.1038/nrn.2015.2 Lucas, 2017, Utility of CRISPR/Cas9 systems in hematology research, Exp. Hematol., 54, 1, 10.1016/j.exphem.2017.06.006 Biagioni, 2018, Delivery systems of CRISPR/Cas9-based cancer gene therapy, J. Biol. Eng., 12, 33, 10.1186/s13036-018-0127-2 Yin, 2019, CRISPR–Cas: a tool for cancer research and therapeutics, Nat. Rev. Clin. Oncol., 16, 281, 10.1038/s41571-019-0166-8 Liu, 2019, Building potent chimeric antigen receptor T cells with CRISPR genome editing, Front. Immunol., 10, 456, 10.3389/fimmu.2019.00456 Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829 Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science (80-. ), 339, 819, 10.1126/science.1231143 Mali, 2013, RNA-guided human genome engineering via Cas9, Science (80-. ), 339, 823, 10.1126/science.1232033 Jinek, 2014, Structures of Cas9 endonucleases reveal RNA-mediated conformational activation, Science, 343, 10.1126/science.1247997 Sternberg, 2014, DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature, 507, 62, 10.1038/nature13011 Zuo, 2016, Cas9-catalyzed DNA cleavage generates staggered ends: evidence from molecular dynamics simulations, Sci. Rep., 6, 10.1038/srep37584 Lemos, 2018, CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles, Proc. Natl. Acad. Sci. U. S. A., 115, E2040, 10.1073/pnas.1716855115 Kim, 2014, Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins, Genome Res., 24, 1012, 10.1101/gr.171322.113 Lin, 2014, Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery, Elife, 3, 10.7554/eLife.04766 Maruyama, 2015, Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining, Nat. Biotechnol., 33, 538, 10.1038/nbt.3190 Chu, 2015, Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells, Nat. Biotechnol., 33, 543, 10.1038/nbt.3198 Richardson, 2016, Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA, Nat. Biotechnol., 34, 339, 10.1038/nbt.3481 Lander, 2016, The heroes of CRISPR, Cell, 164, 18, 10.1016/j.cell.2015.12.041 Stella, 2017, Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing, Nat. Struct. Mol. Biol., 24, 882, 10.1038/nsmb.3486 Long, 2016, Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy, Science (80-. ), 351, 400, 10.1126/science.aad5725 Nelson, 2016, In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy, Science, 351, 403, 10.1126/science.aad5143 Tabebordbar, 2016, In vivo gene editing in dystrophic mouse muscle and muscle stem cells, Science (80-. ), 351, 407, 10.1126/science.aad5177 Bengtsson, 2017, Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy, Nat. Commun., 8 Amoasii, 2017, Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy, Sci. Transl. Med., 9, 10.1126/scitranslmed.aan8081 Amoasii, 2018, Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy, Science, 362, 86, 10.1126/science.aau1549 Min, 2019, CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells, Sci. Adv., 5, 10.1126/sciadv.aav4324 Carroll, 2016, A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9, Proc. Natl. Acad. Sci. U. S. A., 113, 338, 10.1073/pnas.1523918113 Guo, 2017, Analysis of cardiac myocyte maturation using CASAAV, a platform for rapid dissection of cardiac myocyte gene function in vivo, Circ. Res., 120, 1874, 10.1161/CIRCRESAHA.116.310283 Guo, 2018, Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor, Nat. Commun., 9, 3837, 10.1038/s41467-018-06347-2 Johansen, 2017, Postnatal cardiac gene editing using CRISPR/Cas9 with AAV9-mediated delivery of short guide RNAs results in mosaic gene disruption, Circ. Res., 121, 1168, 10.1161/CIRCRESAHA.116.310370 James, 1998, Cardiac physiology in transgenic mice, Circ. Res., 82, 407, 10.1161/01.RES.82.4.407 Fishman, 1998, Timing is everything in life: conditional transgene expression in the cardiovascular system, Circ. Res., 82, 837, 10.1161/01.RES.82.8.837 Doetschman, 2012, Cardiac-specific inducible and conditional gene targeting in mice, Circ. Res., 110, 1498, 10.1161/CIRCRESAHA.112.265066 Yang, 2013, One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering, Cell, 154, 1370, 10.1016/j.cell.2013.08.022 Wang, 2013, One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering, Cell, 153, 910, 10.1016/j.cell.2013.04.025 Li, 2013, Heritable gene targeting in the mouse and rat using a CRISPR-Cas system, Nat. Biotechnol., 31, 681, 10.1038/nbt.2661 Aida, 2015, Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice, Genome Biol., 16, 87, 10.1186/s13059-015-0653-x Inui, 2015, Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system, Sci. Rep., 4, 5396, 10.1038/srep05396 Nakamura, 2015, Generation of muscular dystrophy model rats with a CRISPR/Cas system, Sci. Rep., 4, 5635, 10.1038/srep05635 Izumi, 2018, CRISPR/Cas9-mediated Angptl8 knockout suppresses plasma triglyceride concentrations and adiposity in rats, J. Lipid Res., 59, 1575, 10.1194/jlr.M082099 Ma, 2017, CRISPR/Cas9-mediated targeting of the Rosa26 locus produces Cre reporter rat strains for monitoring Cre -loxP -mediated lineage tracing, FEBS J., 284, 3262, 10.1111/febs.14188 Yang, 2014, Effective gene targeting in rabbits using RNA-guided Cas9 nucleases, J. Mol. Cell Biol., 6, 97, 10.1093/jmcb/mjt047 Huang, 2017, CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels, Oncotarget, 8, 37751, 10.18632/oncotarget.17154 Fang, 2018, Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs, Dis. Model. Mech., 11, 10.1242/dmm.036632 Tessadori, 2018, Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders, Dis. Model. Mech., 11, 10.1242/dmm.035469 Wu, 2018, A rapid method for directed gene knockout for screening in G0 zebrafish, Dev. Cell, 46, 112, 10.1016/j.devcel.2018.06.003 Ma, 2017, Correction of a pathogenic gene mutation in human embryos, Nature, 548, 413, 10.1038/nature23305 Ma, 2018, Ma et al. reply, Nature, 560, E10, 10.1038/s41586-018-0381-y Yoshida, 2017, Induced pluripotent stem cells 10 years later, Circ. Res., 120, 1958, 10.1161/CIRCRESAHA.117.311080 Liang, 2016, Patient-specific and genome-edited induced pluripotent stem cell–derived cardiomyocytes elucidate single-cell phenotype of Brugada syndrome, J. Am. Coll. Cardiol., 68, 2086, 10.1016/j.jacc.2016.07.779 Ang, 2016, Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis, Cell, 167, 1734, 10.1016/j.cell.2016.11.033 Mosqueira, 2018, CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy, Eur. Heart J., 44, 1 Seeger, 2019, A premature termination codon mutation in MYBPC3 causes hypertrophic cardiomyopathy via chronic activation of nonsense-mediated decay, Circulation, 139, 799, 10.1161/CIRCULATIONAHA.118.034624 Ben Jehuda, 2018, CRISPR correction of the PRKAG2 gene mutation in the patient’s induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities, Hear. Rhythm, 15, 267, 10.1016/j.hrthm.2017.09.024 Sala, 2017, Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come?, Br. J. Pharmacol., 174, 3749, 10.1111/bph.13577 Gilbert, 2013, CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, 154, 442, 10.1016/j.cell.2013.06.044 Limpitikul, 2017, A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome, Circ. Res., 120, 39, 10.1161/CIRCRESAHA.116.309283 Chavez, 2015, Highly efficient Cas9-mediated transcriptional programming, Nat. Methods, 12, 326, 10.1038/nmeth.3312 Tanenbaum, 2014, A protein-tagging system for signal amplification in gene expression and fluorescence imaging, Cell, 159, 635, 10.1016/j.cell.2014.09.039 Konermann, 2015, Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, 517, 583, 10.1038/nature14136 Polstein, 2015, A light-inducible CRISPR-Cas9 system for control of endogenous gene activation, Nat. Chem. Biol., 11, 198, 10.1038/nchembio.1753 Nihongaki, 2015, CRISPR-Cas9-based photoactivatable transcription system, Chem. Biol., 22, 169, 10.1016/j.chembiol.2014.12.011 Hemphill, 2015, Optical control of CRISPR/Cas9 gene editing, J. Am. Chem. Soc., 137, 5642, 10.1021/ja512664v Veres, 2014, Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing, Cell Stem Cell, 15, 27, 10.1016/j.stem.2014.04.020 Smith, 2014, Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs, Cell Stem Cell, 15, 12, 10.1016/j.stem.2014.06.011 Aryal, 2018, CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo, Cell Death Dis., 9, 1099, 10.1038/s41419-018-1146-0 Fu, 2014, Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat. Biotechnol., 32, 279, 10.1038/nbt.2808 Farboud, 2015, Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design, Genetics, 199, 959, 10.1534/genetics.115.175166 Zhang, 2016, Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency, Sci. Rep., 6 Doench, 2016, Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9, Nat. Biotechnol., 34, 184, 10.1038/nbt.3437 Chari, 2017, sgRNA Scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity, ACS Synth. Biol., 6, 902, 10.1021/acssynbio.6b00343 Perez, 2017, GuideScan software for improved single and paired CRISPR guide RNA design, Nat. Biotechnol., 35, 347, 10.1038/nbt.3804 Chuai, 2018, DeepCRISPR: optimized CRISPR guide RNA design by deep learning, Genome Biol., 19, 80, 10.1186/s13059-018-1459-4 Tsai, 2015, GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases, Nat. Biotechnol., 33, 187, 10.1038/nbt.3117 Shen, 2014, Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects, Nat. Methods, 11, 399, 10.1038/nmeth.2857 Kleinstiver, 2016, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490, 10.1038/nature16526 Slaymaker, 2016, Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84, 10.1126/science.aad5227 Chen, 2017, Enhanced proofreading governs CRISPR-Cas9 targeting accuracy, Nature, 550, 407, 10.1038/nature24268 Kadyk, 1992, Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae, Genetics, 132, 387, 10.1093/genetics/132.2.387 Orthwein, 2015, A mechanism for the suppression of homologous recombination in G1 cells, Nature, 528, 422, 10.1038/nature16142 Suzuki, 2016, In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration, Nature, 540, 144, 10.1038/nature20565 Shin, 2017, CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome, Nat. Commun., 8, 10.1038/ncomms15464 Kosicki, 2018, Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements, Nat. Biotechnol., 36, 765, 10.1038/nbt.4192 Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946 Gaudelli, 2017, Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage, Nature, 551, 464, 10.1038/nature24644 Cohen, 2006, Sequence variations in PCSK9, low LDL, and protection against coronary heart disease, N. Engl. J. Med., 354, 1264, 10.1056/NEJMoa054013 Chadwick, 2017, In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing, Arterioscler. Thromb. Vasc. Biol., 37, 1741, 10.1161/ATVBAHA.117.309881 Zuo, 2019, Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos, Science, 364, 289, 10.1126/science.aav9973 Grünewald, 2019, Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors, Nature, 569, 433, 10.1038/s41586-019-1161-z Rees, 2018, Base editing: precision chemistry on the genome and transcriptome of living cells, Nat. Rev. Genet., 19, 770, 10.1038/s41576-018-0059-1 Liu, 2016, Editing DNA methylation in the mammalian genome, Cell, 167, 10.1016/j.cell.2016.08.056 Morita, 2016, Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions, Nat. Biotechnol., 34, 1060, 10.1038/nbt.3658 Xu, 2016, A CRISPR-based approach for targeted DNA demethylation, Cell Discov., 2, 10.1038/celldisc.2016.9 Hilton, 2015, Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers, Nat. Biotechnol., 33, 510, 10.1038/nbt.3199 Kearns, 2015, Functional annotation of native enhancers with a Cas9-histone demethylase fusion, Nat. Methods, 12, 401, 10.1038/nmeth.3325 Braun, 2017, Rapid and reversible epigenome editing by endogenous chromatin regulators, Nat. Commun., 8, 560, 10.1038/s41467-017-00644-y Wang, 2018, CRISPR-mediated programmable 3D genome positioning and nuclear organization, Cell, 175, 10.1016/j.cell.2018.09.013 Movassagh, 2011, Genome-wide DNA methylation in human heart failure, Epigenomics, 3, 103, 10.2217/epi.10.70 Haas, 2013, Alterations in cardiac DNA methylation in human dilated cardiomyopathy, EMBO Mol. Med., 5, 413, 10.1002/emmm.201201553 Gilsbach, 2018, Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo, Nat. Commun., 9, 391, 10.1038/s41467-017-02762-z Bertero, 2019, Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory, Nat. Commun., 10, 1538, 10.1038/s41467-019-09483-5 Charlesworth, 2019, Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat, Med., 25, 249 Nelson, 2019, Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy, Nat. Med., 25, 427, 10.1038/s41591-019-0344-3 Glass, 2017, Nanoparticles for CRISPR-Cas9 delivery, Nat. Biomed. Eng., 1, 854, 10.1038/s41551-017-0158-x Cyranoski, 2018, Genome-edited baby claim provokes international outcry, Nature, 563, 607, 10.1038/d41586-018-07545-0