CRISPR Craze to Transform Cardiac Biology
Tài liệu tham khảo
Heidenreich, 2016, Applications of CRISPR-Cas systems in neuroscience, Nat. Rev. Neurosci., 17, 36, 10.1038/nrn.2015.2
Lucas, 2017, Utility of CRISPR/Cas9 systems in hematology research, Exp. Hematol., 54, 1, 10.1016/j.exphem.2017.06.006
Biagioni, 2018, Delivery systems of CRISPR/Cas9-based cancer gene therapy, J. Biol. Eng., 12, 33, 10.1186/s13036-018-0127-2
Yin, 2019, CRISPR–Cas: a tool for cancer research and therapeutics, Nat. Rev. Clin. Oncol., 16, 281, 10.1038/s41571-019-0166-8
Liu, 2019, Building potent chimeric antigen receptor T cells with CRISPR genome editing, Front. Immunol., 10, 456, 10.3389/fimmu.2019.00456
Jinek, 2012, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, 337, 816, 10.1126/science.1225829
Cong, 2013, Multiplex genome engineering using CRISPR/Cas systems, Science (80-. ), 339, 819, 10.1126/science.1231143
Mali, 2013, RNA-guided human genome engineering via Cas9, Science (80-. ), 339, 823, 10.1126/science.1232033
Jinek, 2014, Structures of Cas9 endonucleases reveal RNA-mediated conformational activation, Science, 343, 10.1126/science.1247997
Sternberg, 2014, DNA interrogation by the CRISPR RNA-guided endonuclease Cas9, Nature, 507, 62, 10.1038/nature13011
Zuo, 2016, Cas9-catalyzed DNA cleavage generates staggered ends: evidence from molecular dynamics simulations, Sci. Rep., 6, 10.1038/srep37584
Lemos, 2018, CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles, Proc. Natl. Acad. Sci. U. S. A., 115, E2040, 10.1073/pnas.1716855115
Kim, 2014, Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins, Genome Res., 24, 1012, 10.1101/gr.171322.113
Lin, 2014, Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery, Elife, 3, 10.7554/eLife.04766
Maruyama, 2015, Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining, Nat. Biotechnol., 33, 538, 10.1038/nbt.3190
Chu, 2015, Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells, Nat. Biotechnol., 33, 543, 10.1038/nbt.3198
Richardson, 2016, Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA, Nat. Biotechnol., 34, 339, 10.1038/nbt.3481
Lander, 2016, The heroes of CRISPR, Cell, 164, 18, 10.1016/j.cell.2015.12.041
Stella, 2017, Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing, Nat. Struct. Mol. Biol., 24, 882, 10.1038/nsmb.3486
Long, 2016, Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy, Science (80-. ), 351, 400, 10.1126/science.aad5725
Nelson, 2016, In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy, Science, 351, 403, 10.1126/science.aad5143
Tabebordbar, 2016, In vivo gene editing in dystrophic mouse muscle and muscle stem cells, Science (80-. ), 351, 407, 10.1126/science.aad5177
Bengtsson, 2017, Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy, Nat. Commun., 8
Amoasii, 2017, Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy, Sci. Transl. Med., 9, 10.1126/scitranslmed.aan8081
Amoasii, 2018, Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy, Science, 362, 86, 10.1126/science.aau1549
Min, 2019, CRISPR-Cas9 corrects Duchenne muscular dystrophy exon 44 deletion mutations in mice and human cells, Sci. Adv., 5, 10.1126/sciadv.aav4324
Carroll, 2016, A mouse model for adult cardiac-specific gene deletion with CRISPR/Cas9, Proc. Natl. Acad. Sci. U. S. A., 113, 338, 10.1073/pnas.1523918113
Guo, 2017, Analysis of cardiac myocyte maturation using CASAAV, a platform for rapid dissection of cardiac myocyte gene function in vivo, Circ. Res., 120, 1874, 10.1161/CIRCRESAHA.116.310283
Guo, 2018, Hierarchical and stage-specific regulation of murine cardiomyocyte maturation by serum response factor, Nat. Commun., 9, 3837, 10.1038/s41467-018-06347-2
Johansen, 2017, Postnatal cardiac gene editing using CRISPR/Cas9 with AAV9-mediated delivery of short guide RNAs results in mosaic gene disruption, Circ. Res., 121, 1168, 10.1161/CIRCRESAHA.116.310370
James, 1998, Cardiac physiology in transgenic mice, Circ. Res., 82, 407, 10.1161/01.RES.82.4.407
Fishman, 1998, Timing is everything in life: conditional transgene expression in the cardiovascular system, Circ. Res., 82, 837, 10.1161/01.RES.82.8.837
Doetschman, 2012, Cardiac-specific inducible and conditional gene targeting in mice, Circ. Res., 110, 1498, 10.1161/CIRCRESAHA.112.265066
Yang, 2013, One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering, Cell, 154, 1370, 10.1016/j.cell.2013.08.022
Wang, 2013, One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering, Cell, 153, 910, 10.1016/j.cell.2013.04.025
Li, 2013, Heritable gene targeting in the mouse and rat using a CRISPR-Cas system, Nat. Biotechnol., 31, 681, 10.1038/nbt.2661
Aida, 2015, Cloning-free CRISPR/Cas system facilitates functional cassette knock-in in mice, Genome Biol., 16, 87, 10.1186/s13059-015-0653-x
Inui, 2015, Rapid generation of mouse models with defined point mutations by the CRISPR/Cas9 system, Sci. Rep., 4, 5396, 10.1038/srep05396
Nakamura, 2015, Generation of muscular dystrophy model rats with a CRISPR/Cas system, Sci. Rep., 4, 5635, 10.1038/srep05635
Izumi, 2018, CRISPR/Cas9-mediated Angptl8 knockout suppresses plasma triglyceride concentrations and adiposity in rats, J. Lipid Res., 59, 1575, 10.1194/jlr.M082099
Ma, 2017, CRISPR/Cas9-mediated targeting of the Rosa26 locus produces Cre reporter rat strains for monitoring Cre -loxP -mediated lineage tracing, FEBS J., 284, 3262, 10.1111/febs.14188
Yang, 2014, Effective gene targeting in rabbits using RNA-guided Cas9 nucleases, J. Mol. Cell Biol., 6, 97, 10.1093/jmcb/mjt047
Huang, 2017, CRISPR/Cas9-mediated ApoE-/- and LDLR-/- double gene knockout in pigs elevates serum LDL-C and TC levels, Oncotarget, 8, 37751, 10.18632/oncotarget.17154
Fang, 2018, Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs, Dis. Model. Mech., 11, 10.1242/dmm.036632
Tessadori, 2018, Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders, Dis. Model. Mech., 11, 10.1242/dmm.035469
Wu, 2018, A rapid method for directed gene knockout for screening in G0 zebrafish, Dev. Cell, 46, 112, 10.1016/j.devcel.2018.06.003
Ma, 2017, Correction of a pathogenic gene mutation in human embryos, Nature, 548, 413, 10.1038/nature23305
Ma, 2018, Ma et al. reply, Nature, 560, E10, 10.1038/s41586-018-0381-y
Yoshida, 2017, Induced pluripotent stem cells 10 years later, Circ. Res., 120, 1958, 10.1161/CIRCRESAHA.117.311080
Liang, 2016, Patient-specific and genome-edited induced pluripotent stem cell–derived cardiomyocytes elucidate single-cell phenotype of Brugada syndrome, J. Am. Coll. Cardiol., 68, 2086, 10.1016/j.jacc.2016.07.779
Ang, 2016, Disease model of GATA4 mutation reveals transcription factor cooperativity in human cardiogenesis, Cell, 167, 1734, 10.1016/j.cell.2016.11.033
Mosqueira, 2018, CRISPR/Cas9 editing in human pluripotent stem cell-cardiomyocytes highlights arrhythmias, hypocontractility, and energy depletion as potential therapeutic targets for hypertrophic cardiomyopathy, Eur. Heart J., 44, 1
Seeger, 2019, A premature termination codon mutation in MYBPC3 causes hypertrophic cardiomyopathy via chronic activation of nonsense-mediated decay, Circulation, 139, 799, 10.1161/CIRCULATIONAHA.118.034624
Ben Jehuda, 2018, CRISPR correction of the PRKAG2 gene mutation in the patient’s induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities, Hear. Rhythm, 15, 267, 10.1016/j.hrthm.2017.09.024
Sala, 2017, Integrating cardiomyocytes from human pluripotent stem cells in safety pharmacology: has the time come?, Br. J. Pharmacol., 174, 3749, 10.1111/bph.13577
Gilbert, 2013, CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes, Cell, 154, 442, 10.1016/j.cell.2013.06.044
Limpitikul, 2017, A precision medicine approach to the rescue of function on malignant calmodulinopathic long-QT syndrome, Circ. Res., 120, 39, 10.1161/CIRCRESAHA.116.309283
Chavez, 2015, Highly efficient Cas9-mediated transcriptional programming, Nat. Methods, 12, 326, 10.1038/nmeth.3312
Tanenbaum, 2014, A protein-tagging system for signal amplification in gene expression and fluorescence imaging, Cell, 159, 635, 10.1016/j.cell.2014.09.039
Konermann, 2015, Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex, Nature, 517, 583, 10.1038/nature14136
Polstein, 2015, A light-inducible CRISPR-Cas9 system for control of endogenous gene activation, Nat. Chem. Biol., 11, 198, 10.1038/nchembio.1753
Nihongaki, 2015, CRISPR-Cas9-based photoactivatable transcription system, Chem. Biol., 22, 169, 10.1016/j.chembiol.2014.12.011
Hemphill, 2015, Optical control of CRISPR/Cas9 gene editing, J. Am. Chem. Soc., 137, 5642, 10.1021/ja512664v
Veres, 2014, Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing, Cell Stem Cell, 15, 27, 10.1016/j.stem.2014.04.020
Smith, 2014, Whole-genome sequencing analysis reveals high specificity of CRISPR/Cas9 and TALEN-based genome editing in human iPSCs, Cell Stem Cell, 15, 12, 10.1016/j.stem.2014.06.011
Aryal, 2018, CRISPR/Cas9 can mediate high-efficiency off-target mutations in mice in vivo, Cell Death Dis., 9, 1099, 10.1038/s41419-018-1146-0
Fu, 2014, Improving CRISPR-Cas nuclease specificity using truncated guide RNAs, Nat. Biotechnol., 32, 279, 10.1038/nbt.2808
Farboud, 2015, Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design, Genetics, 199, 959, 10.1534/genetics.115.175166
Zhang, 2016, Different effects of sgRNA length on CRISPR-mediated gene knockout efficiency, Sci. Rep., 6
Doench, 2016, Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9, Nat. Biotechnol., 34, 184, 10.1038/nbt.3437
Chari, 2017, sgRNA Scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity, ACS Synth. Biol., 6, 902, 10.1021/acssynbio.6b00343
Perez, 2017, GuideScan software for improved single and paired CRISPR guide RNA design, Nat. Biotechnol., 35, 347, 10.1038/nbt.3804
Chuai, 2018, DeepCRISPR: optimized CRISPR guide RNA design by deep learning, Genome Biol., 19, 80, 10.1186/s13059-018-1459-4
Tsai, 2015, GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases, Nat. Biotechnol., 33, 187, 10.1038/nbt.3117
Shen, 2014, Efficient genome modification by CRISPR-Cas9 nickase with minimal off-target effects, Nat. Methods, 11, 399, 10.1038/nmeth.2857
Kleinstiver, 2016, High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects, Nature, 529, 490, 10.1038/nature16526
Slaymaker, 2016, Rationally engineered Cas9 nucleases with improved specificity, Science, 351, 84, 10.1126/science.aad5227
Chen, 2017, Enhanced proofreading governs CRISPR-Cas9 targeting accuracy, Nature, 550, 407, 10.1038/nature24268
Kadyk, 1992, Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae, Genetics, 132, 387, 10.1093/genetics/132.2.387
Orthwein, 2015, A mechanism for the suppression of homologous recombination in G1 cells, Nature, 528, 422, 10.1038/nature16142
Suzuki, 2016, In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration, Nature, 540, 144, 10.1038/nature20565
Shin, 2017, CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome, Nat. Commun., 8, 10.1038/ncomms15464
Kosicki, 2018, Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements, Nat. Biotechnol., 36, 765, 10.1038/nbt.4192
Komor, 2016, Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage, Nature, 533, 420, 10.1038/nature17946
Gaudelli, 2017, Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage, Nature, 551, 464, 10.1038/nature24644
Cohen, 2006, Sequence variations in PCSK9, low LDL, and protection against coronary heart disease, N. Engl. J. Med., 354, 1264, 10.1056/NEJMoa054013
Chadwick, 2017, In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing, Arterioscler. Thromb. Vasc. Biol., 37, 1741, 10.1161/ATVBAHA.117.309881
Zuo, 2019, Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos, Science, 364, 289, 10.1126/science.aav9973
Grünewald, 2019, Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors, Nature, 569, 433, 10.1038/s41586-019-1161-z
Rees, 2018, Base editing: precision chemistry on the genome and transcriptome of living cells, Nat. Rev. Genet., 19, 770, 10.1038/s41576-018-0059-1
Liu, 2016, Editing DNA methylation in the mammalian genome, Cell, 167, 10.1016/j.cell.2016.08.056
Morita, 2016, Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions, Nat. Biotechnol., 34, 1060, 10.1038/nbt.3658
Xu, 2016, A CRISPR-based approach for targeted DNA demethylation, Cell Discov., 2, 10.1038/celldisc.2016.9
Hilton, 2015, Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers, Nat. Biotechnol., 33, 510, 10.1038/nbt.3199
Kearns, 2015, Functional annotation of native enhancers with a Cas9-histone demethylase fusion, Nat. Methods, 12, 401, 10.1038/nmeth.3325
Braun, 2017, Rapid and reversible epigenome editing by endogenous chromatin regulators, Nat. Commun., 8, 560, 10.1038/s41467-017-00644-y
Wang, 2018, CRISPR-mediated programmable 3D genome positioning and nuclear organization, Cell, 175, 10.1016/j.cell.2018.09.013
Movassagh, 2011, Genome-wide DNA methylation in human heart failure, Epigenomics, 3, 103, 10.2217/epi.10.70
Haas, 2013, Alterations in cardiac DNA methylation in human dilated cardiomyopathy, EMBO Mol. Med., 5, 413, 10.1002/emmm.201201553
Gilsbach, 2018, Distinct epigenetic programs regulate cardiac myocyte development and disease in the human heart in vivo, Nat. Commun., 9, 391, 10.1038/s41467-017-02762-z
Bertero, 2019, Dynamics of genome reorganization during human cardiogenesis reveal an RBM20-dependent splicing factory, Nat. Commun., 10, 1538, 10.1038/s41467-019-09483-5
Charlesworth, 2019, Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat, Med., 25, 249
Nelson, 2019, Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy, Nat. Med., 25, 427, 10.1038/s41591-019-0344-3
Glass, 2017, Nanoparticles for CRISPR-Cas9 delivery, Nat. Biomed. Eng., 1, 854, 10.1038/s41551-017-0158-x
Cyranoski, 2018, Genome-edited baby claim provokes international outcry, Nature, 563, 607, 10.1038/d41586-018-07545-0