COX-3, a cyclooxygenase-1 variant inhibited by acetaminophen and other analgesic/antipyretic drugs: Cloning, structure, and expression

N.V. Chandrasekharan1, Hu Dai2,3, Katarina Roos2,3, Nathan K. Evanson2,3, Joshua Tomsik2,3, Terry S. Elton2,3, Daniel L. Simmons2,3
1Department of Chemistry and Biochemistry, E280 Benson Science Building, Brigham Young University, Provo, UT 84602, USA.
2Communicated by John Vane, William Harvey Foundation, London, United Kingdom,
3Department of Chemistry and Biochemistry, E280 Benson Science Building, Brigham Young University, Provo, UT 84602

Tóm tắt

Two cyclooxygenase isozymes, COX-1 and -2, are known to catalyze the rate-limiting step of prostaglandin synthesis and are the targets of nonsteroidal antiinflammatory drugs. Here we describe a third distinct COX isozyme, COX-3, as well as two smaller COX-1-derived proteins ( p artial COX-1 or PCOX-1 proteins). COX-3 and one of the PCOX-1 proteins (PCOX-1a) are made from the COX-1 gene but retain intron 1 in their mRNAs. PCOX-1 proteins additionally contain an in-frame deletion of exons 5–8 of the COX-1 mRNA. COX-3 and PCOX mRNAs are expressed in canine cerebral cortex and in lesser amounts in other tissues analyzed. In human, COX-3 mRNA is expressed as an ≈5.2-kb transcript and is most abundant in cerebral cortex and heart. Intron 1 is conserved in length and in sequence in mammalian COX-1 genes. This intron contains an ORF that introduces an insertion of 30–34 aa, depending on the mammalian species, into the hydrophobic signal peptide that directs COX-1 into the lumen of the endoplasmic reticulum and nuclear envelope. COX-3 and PCOX-1a are expressed efficiently in insect cells as membrane-bound proteins. The signal peptide is not cleaved from either protein and both proteins are glycosylated. COX-3, but not PCOX-1a, possesses glycosylation-dependent cyclooxygenase activity. Comparison of canine COX-3 activity with murine COX-1 and -2 demonstrates that this enzyme is selectively inhibited by analgesic/antipyretic drugs such as acetaminophen, phenacetin, antipyrine, and dipyrone, and is potently inhibited by some nonsteroidal antiinflammatory drugs. Thus, inhibition of COX-3 could represent a primary central mechanism by which these drugs decrease pain and possibly fever.

Từ khóa


Tài liệu tham khảo

R M Botting Clin Infect Dis 31, 8202–8210 (2000).

R J Flower, J R Vane Nature (London) 240, 410–411 (1972).

J Sambrook, D Russell Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Lab. Press, 3rd Ed., Plainview, NY, 2001).

D L Simmons, D B Levy, Y Yannoni, R L Erikson Proc Natl Acad Sci USA 86, 1178–1182 (1989).

T Hla Prostaglandins 51, 81–85 (1996).

D L Simmons, W Xie, J G Chipman, G E Evett Prostaglandins, Leukotrienes, Lipoxins and PAF, ed J M Bailey (Plenum, New York), pp. 67–78 (1991).

J A Salmon Prostaglandins 15, 383–397 (1978).

G P O'Neill, A W Ford-Hutchinson FEBS 330, 156–160 (1993).

M A Moyad Semin Urol Oncol 19, 280–293 (2001).

S M Cohen, T Shirai, G Steineck Scand J Urol Nephrol Suppl 205, 105–115 (2000).

W Xie, J G Chipman, D L Robertson, R L Erikson, D L Simmons Proc Natl Acad Sci USA 88, 2692–2696 (1991).

T A Kennedy, C J Smith, L J Marnett J Biol Chem 269, 27357–27364 (1994).

A J Matheson, D P Figgitt Drugs 61, 833–865 (2001).

D Riendeau, M D Percival, C Brideau, S Charleson, D Dube, D Ethier, J P Falgueret, R W Friesen, R Gordon, G Greig, et al. J Pharmacol Exp Ther 296, 558–566 (2001).

C J Smith, Y Zhang, C M Koboldt, J Muhammad, B S Zweifel, A Shaffer, J J Talley, J L Masferrer, K Seibert, P C Isakson Proc Natl Acad Sci USA 95, 13313–13318 (1998).

H Kusuhara, H Matsuyuki, T Okumoto Prostaglandins Other Lipid Mediat 55, 43–49 (1998).

K Goto, H Ochi, Y Yasunaga, H Matsuyuki, T Imayoshi, H Kusuhara, T Okumoto Prostaglandins Other Lipid Mediat 56, 245–254 (1998).

T Ochi, Y Motoyama, T Goto Eur J Pharmacol 391, 49–54 (2000).

L R Ballou, R M Botting, S Goorha, J Zhang, J R Vane Proc Natl Acad Sci USA 97, 10272–10276 (2000).

R V Martinez, M Reval, M D Campos, J A Terron, R Dominguez, F J Lopez-Munoz J Pharm Pharmacol 54, 405–412 (2002).

T D Warner, F Giuliano, I Vojnovic, A Bukasa, J A Mitchell, J R Vane Proc Natl Acad Sci USA 96, 7563–7568 (1999).

M M Buckley, R N Brogden Drugs 39, 86–109 (1990).

B Chopra, S Giblett, J G Little, L F Donaldson, S Tate, R J Evans, B D Grubb Eur J Neurosci 12, 911–920 (2000).

S Li, Y Wang, K Matsumura, L R Ballou, S G Morham, C M Blatteis Brain Res 825, 86–94 (1999).

S Li, L R Ballou, S G Morham, C M Blatteis Brain Res 910, 163–173 (2001).

A A Steiner, S Li, Q J Llanos, C M Blatteis Neuroimmunomodulation 9, 263–275 (2001).

M D Dogan, H Ataoglu, E S Akarsu Brain Res Bull 57, 179–185 (2002).

J I Schwartz, C-C Chan, S Mukhopadhyay, K J McBride, T M Jones, S Adcock, C Moritz, J Hedges, K Grasing, D Dobratz, et al. Clin Pharmacol Ther 65, 653–660 (1999).

A Vigano, A Dalla Villa, I Cecchini, G C Biasini, N Principi Eur J Clin Pharmacol 31, 359–361 (1986).

R A Doughty, L Giesecke, B Athreya Am J Dis Child 134, 461–463 (1980).

M Gunsberg, F Bochner, G Graham, D Imhoff, G Parsons, B Cham Clin Pharmacol Ther 35, 585–593 (1984).

P L Toutain, C C Cester, T Haak, V Laroute J Vet Pharmacol Ther 24, 43–55 (2001).

O Cohen, E Zylber-Katz, Y Caraco, L Granit, M Levy Eur J Clin Pharmacol 54, 549–553 (1998).

J G Bovill Eur J Anaesthesiol Suppl 15, 9–15 (1997).

I Jurna, K Brune Pain 41, 71–80 (1990).

M H Plant, O Laneuville Biochem J 344, 677–685 (1999).

A Sanz, J I Moreno, C Castresana Plant Cell 10, 1523–1537 (1998).

E H Oliw, C Su, M Sahlin Adv Exp Med Biol 469, 679–685 (1999).

L M Landino, B C Crews, J K Gierse, S D Hauser, L J Marnett J Biol Chem 272, 21565–21574 (1997).

B A Ballif, N V Mincek, J T Barratt, M L Wilson, D L Simmons Proc Natl Acad Sci USA 93, 5544–5549 (1996).

J Y Liou, S K Shyue, M J Tsai, C L Chung, K Y Chu, K K Wu J Biol Chem 275, 15314–15320 (2000).

D L Simmons, R M Botting, P M Robertson, M L Madsen, J R Vane Proc Natl Acad Sci USA 96, 3275–3280 (1999).