COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord
Tóm tắt
While multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) are primarily inflammatory and degenerative disorders respectively, there is increasing evidence for shared cellular mechanisms that may affect disease progression, particularly glial responses. Cyclooxygenase 2 (COX-2) inhibition prolongs survival and cannabinoids ameliorate progression of clinical disease in animal models of ALS and MS respectively, but the mechanism is uncertain. Therefore, three key molecules known to be expressed in activated microglial cells/macrophages, COX-2, CB2 and P2X7, which plays a role in inflammatory cascades, were studied in MS and ALS post-mortem human spinal cord.
Frozen human post mortem spinal cord specimens, controls (n = 12), ALS (n = 9) and MS (n = 19), were available for study by immunocytochemistry and Western blotting, using specific antibodies to COX-2, CB2 and P2X7, and markers of microglial cells/macrophages (CD 68, ferritin). In addition, autoradiography for peripheral benzodiazepine binding sites was performed on some spinal cord sections using [3H] (R)-PK11195, a marker of activated microglial cells/macrophages. Results of immunostaining and Western blotting were quantified by computerized image and optical density analysis respectively.
In control spinal cord, few small microglial cells/macrophages-like COX-2-immunoreactive cells, mostly bipolar with short processes, were scattered throughout the tissue, whilst MS and ALS specimens had significantly greater density of such cells with longer processes in affected regions, by image analysis. Inflammatory cell marker CD68-immunoreactivity, [3H] (R)-PK11195 autoradiography, and double-staining against ferritin confirmed increased production of COX-2 by activated microglial cells/macrophages. An expected 70-kDa band was seen by Western blotting which was significantly increased in MS spinal cord. There was good correlation between the COX-2 immunostaining and optical density of the COX-2 70-kDa band in the MS group (r = 0.89, P = 0.0011, n = 10). MS and ALS specimens also had significantly greater density of P2X7 and CB2-immunoreactive microglial cells/macrophages in affected regions.
It is hypothesized that the known increase of lesion-associated extracellular ATP contributes via P2X7 activation to release IL-1 beta which in turn induces COX-2 and downstream pathogenic mediators. Selective CNS-penetrant COX-2 and P2X7 inhibitors and CB2 specific agonists deserve evaluation in the progression of MS and ALS.
Từ khóa
Tài liệu tham khảo
Bensimon G, Lacomblez L, Meininger V: A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N Engl J Med. 1994, 330 (9): 585-591. 10.1056/NEJM199403033300901.
Jacobs LD, Cookfair DL, Rudick RA, Herndon RM, Richert JR, Salazar AM, Fischer JS, Goodkin DE, Granger CV, Simon JH, Alam JJ, Bartoszak DM, Bourdette DN, Braiman J, Brownscheidle CM, Coats ME, Cohan SL, Dougherty DS, Kinkel RP, Mass MK, Munschauer FE, Priore RL, Pullicino PM, Scherokman BJ, Whitham RH, et al: Intramuscular interferon beta-1a for disease progression in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Ann Neurol. 1996, 39 (3): 285-294. 10.1002/ana.410390304.
O'Banion MK: Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol. 1999, 13 (1): 45-82.
Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Isakson P: Distribution of COX-1 and COX-2 in normal and inflamed tissues. Adv Exp Med Biol. 1997, 400A: 167-170.
Lim H, Paria BC, Das SK, Dinchuk JE, Langenbach R, Trzaskos JM, Dey SK: Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell. 1997, 91 (2): 197-208. 10.1016/S0092-8674(00)80402-X.
Goppelt-Struebe M, Beiche F: Cyclooxygenase-2 in the spinal cord: localization and regulation after a peripheral inflammatory stimulus. Adv Exp Med Biol. 1997, 433: 213-216.
Sairanen T, Ristimaki A, Karjalainen-Lindsberg ML, Paetau A, Kaste M, Lindsberg PJ: Cyclooxygenase-2 is induced globally in infarcted human brain. Ann Neurol. 1998, 43 (6): 738-747. 10.1002/ana.410430608.
Willingale HL, Gardiner NJ, McLymont N, Giblett S, Grubb BD: Prostanoids synthesized by cyclo-oxygenase isoforms in rat spinal cord and their contribution to the development of neuronal hyperexcitability. Br J Pharmacol. 1997, 122 (8): 1593-1604. 10.1038/sj.bjp.0701548.
Badie B, Schartner JM, Hagar AR, Prabakaran S, Peebles TR, Bartley B, Lapsiwala S, Resnick DK, Vorpahl J: Microglia cyclooxygenase-2 activity in experimental gliomas: possible role in cerebral edema formation. Clin Cancer Res. 2003, 9 (2): 872-877.
Yasojima K, Tourtellotte WW, McGeer EG, McGeer PL: Marked increase in cyclooxygenase-2 in ALS spinal cord: implications for therapy. Neurology. 2001, 57 (6): 952-956.
Almer G, Guegan C, Teismann P, Naini A, Rosoklija G, Hays AP, Chen C, Przedborski S: Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann Neurol. 2001, 49 (2): 176-185. 10.1002/1531-8249(20010201)49:2<176::AID-ANA37>3.0.CO;2-X.
Pompl PN, Ho L, Bianchi M, McManus T, Qin W, Pasinetti GM: A therapeutic role for cyclooxygenase-2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis. Faseb J. 2003
Klein TW, Newton C, Friedman H: Cannabinoid receptors and immunity. Immunol Today. 1998, 19 (8): 373-381. 10.1016/S0167-5699(98)01300-0.
Kaminski NE: Regulation of the cAMP cascade, gene expression and immune function by cannabinoid receptors. J Neuroimmunol. 1998, 83 (1-2): 124-132. 10.1016/S0165-5728(97)00228-2.
Howlett AC, Barth F, Bonner TI, Cabral G, Casellas P, Devane WA, Felder CC, Herkenham M, Mackie K, Martin BR, Mechoulam R, Pertwee RG: International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev. 2002, 54 (2): 161-202. 10.1124/pr.54.2.161.
Mechoulam R, Spatz M, Shohami E: Endocannabinoids and neuroprotection. Sci STKE. 2002, 2002 (129): RE5-
Coffey RG, Yamamoto Y, Snella E, Pross S: Tetrahydrocannabinol inhibition of macrophage nitric oxide production. Biochem Pharmacol. 1996, 52 (5): 743-751. 10.1016/0006-2952(96)00356-5.
Meda L, Cassatella MA, Szendrei GI, Otvos LJ, Baron P, Villalba M, Ferrari D, Rossi F: Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature. 1995, 374 (6523): 647-650. 10.1038/374647a0.
Chung H, Brazil MI, Soe TT, Maxfield FR: Uptake, degradation, and release of fibrillar and soluble forms of Alzheimer's amyloid beta-peptide by microglial cells. J Biol Chem. 1999, 274 (45): 32301-32308. 10.1074/jbc.274.45.32301.
Surprenant A, Rassendren F, Kawashima E, North RA, Buell G: The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996, 272 (5262): 735-738.
Perregaux DG, Gabel CA: Human monocyte stimulus-coupled IL-1beta posttranslational processing: modulation via monovalent cations. Am J Physiol. 1998, 275 (6 Pt 1): C1538-47.
Ferrari D, Chiozzi P, Falzoni S, Dal Susino M, Melchiorri L, Baricordi OR, Di Virgilio F: Extracellular ATP triggers IL-1 beta release by activating the purinergic P2Z receptor of human macrophages. J Immunol. 1997, 159 (3): 1451-1458.
Solle M, Labasi J, Perregaux DG, Stam E, Petrushova N, Koller BH, Griffiths RJ, Gabel CA: Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem. 2001, 276 (1): 125-132. 10.1074/jbc.M006781200.
Guan Z, Buckman SY, Miller BW, Springer LD, Morrison AR: Interleukin-1beta-induced cyclooxygenase-2 expression requires activation of both c-Jun NH2-terminal kinase and p38 MAPK signal pathways in rat renal mesangial cells. J Biol Chem. 1998, 273 (44): 28670-28676. 10.1074/jbc.273.44.28670.
Chakfe Y, Seguin R, Antel JP, Morissette C, Malo D, Henderson D, Seguela P: ADP and AMP induce interleukin-1beta release from microglial cells through activation of ATP-primed P2X7 receptor channels. J Neurosci. 2002, 22 (8): 3061-3069.
Collo G, Neidhart S, Kawashima E, Kosco-Vilbois M, North RA, Buell G: Tissue distribution of the P2X7 receptor. Neuropharmacology. 1997, 36 (9): 1277-1283. 10.1016/S0028-3908(97)00140-8.
Peudenier S, Hery C, Montagnier L, Tardieu M: Human microglial cells: characterization in cerebral tissue and in primary culture, and study of their susceptibility to HIV-1 infection. Ann Neurol. 1991, 29 (2): 152-161. 10.1002/ana.410290207.
Banati RB, Newcombe J, Gunn RN, Cagnin A, Turkheimer F, Heppner F, Price G, Wegner F, Giovannoni G, Miller DH, Perkin GD, Smith T, Hewson AK, Bydder G, Kreutzberg GW, Jones T, Cuzner ML, Myers R: The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain. 2000, 123 ( Pt 11): 2321-2337. 10.1093/brain/123.11.2321.
De Groot CJ, Bergers E, Kamphorst W, Ravid R, Polman CH, Barkhof F, van der Valk P: Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain. 2001, 124 (Pt 8): 1635-1645. 10.1093/brain/124.8.1635.
Nijeholt GJ, Bergers E, Kamphorst W, Bot J, Nicolay K, Castelijns JA, van Waesberghe JH, Ravid R, Polman CH, Barkhof F: Post-mortem high-resolution MRI of the spinal cord in multiple sclerosis: a correlative study with conventional MRI, histopathology and clinical phenotype. Brain. 2001, 124 (Pt 1): 154-166. 10.1093/brain/124.1.154.
Yiangou Y, Facer P, Baecker PA, Ford AP, Knowles CH, Chan CL, Williams NS, Anand P: ATP-gated ion channel P2X(3) is increased in human inflammatory bowel disease. Neurogastroenterol Motil. 2001, 13 (4): 365-369. 10.1046/j.1365-2982.2001.00276.x.
Banati RB, Myers R, Kreutzberg GW: PK ('peripheral benzodiazepine')--binding sites in the CNS indicate early and discrete brain lesions: microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol. 1997, 26 (2): 77-82. 10.1023/A:1018567510105.
Shah F, Hume SP, Pike VW, Ashworth S, McDermott J: Synthesis of the enantiomers of [N-methyl-11C]PK 11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol. 1994, 21 (4): 573-581. 10.1016/0969-8051(94)90022-1.
Maihofner C, Probst-Cousin S, Bergmann M, Neuhuber W, Neundorfer B, Heuss D: Expression and localization of cyclooxygenase-1 and -2 in human sporadic amyotrophic lateral sclerosis. Eur J Neurosci. 2003, 18 (6): 1527-1534. 10.1046/j.1460-9568.2003.02879.x.
Beiche F, Brune K, Geisslinger G, Goppelt-Struebe M: Expression of cyclooxygenase isoforms in the rat spinal cord and their regulation during adjuvant-induced arthritis. Inflamm Res. 1998, 47 (12): 482-487. 10.1007/s000110050362.
Durrenberger PF, Facer P, Gray RA, Chessell IP, Naylor A, Bountra C, Banati RB, Birch R, Anand P: Cyclooxygenase-2 (Cox-2) in injured human nerve and a rat model of nerve injury. J Peripher Nerv Syst. 2004, 9 (1): 15-25. 10.1111/j.1085-9489.2004.09104.x.
Tonai T, Taketani Y, Ueda N, Nishisho T, Ohmoto Y, Sakata Y, Muraguchi M, Wada K, Yamamoto S: Possible involvement of interleukin-1 in cyclooxygenase-2 induction after spinal cord injury in rats. J Neurochem. 1999, 72 (1): 302-309. 10.1046/j.1471-4159.1999.0720302.x.
Resnick DK, Graham SH, Dixon CE, Marion DW: Role of cyclooxygenase 2 in acute spinal cord injury. J Neurotrauma. 1998, 15 (12): 1005-1013.
Schipke CG, Boucsein C, Ohlemeyer C, Kirchhoff F, Kettenmann H: Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. Faseb J. 2002, 16 (2): 255-257.
Ahmed SM, Rzigalinski BA, Willoughby KA, Sitterding HA, Ellis EF: Stretch-induced injury alters mitochondrial membrane potential and cellular ATP in cultured astrocytes and neurons. J Neurochem. 2000, 74 (5): 1951-1960.
Verderio C, Matteoli M: ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. J Immunol. 2001, 166 (10): 6383-6391.
Honda S, Kohsaka S: [Regulation of microglial cell function by ATP]. Nihon Shinkei Seishin Yakurigaku Zasshi. 2001, 21 (3): 89-93.
Parvathenani LK, Tertyshnikova S, Greco CR, Roberts SB, Robertson B, Posmantur R: P2X7 Mediates Superoxide Production in Primary Microglia and Is Up-regulated in a Transgenic Mouse Model of Alzheimer's Disease. J Biol Chem. 2003, 278 (15): 13309-13317. 10.1074/jbc.M209478200.
Choi HB, Khoo C, Ryu JK, van Breemen E, Kim SU, McLarnon JG: Inhibition of lipopolysaccharide-induced cyclooxygenase-2, tumor necrosis factor-alpha and [Ca2+]i responses in human microglia by the peripheral benzodiazepine receptor ligand PK11195. J Neurochem. 2002, 83 (3): 546-555. 10.1046/j.1471-4159.2002.01122.x.
Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N: Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci. 2003, 23 (4): 1398-1405.
Achiron A, Miron S, Lavie V, Margalit R, Biegon A: Dexanabinol (HU-211) effect on experimental autoimmune encephalomyelitis: implications for the treatment of acute relapses of multiple sclerosis. J Neuroimmunol. 2000, 102 (1): 26-31. 10.1016/S0165-5728(99)00149-6.
Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Huffman JW, Layward L: Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature. 2000, 404 (6773): 84-87. 10.1038/35003583.
Wirguin I, Mechoulam R, Breuer A, Schezen E, Weidenfeld J, Brenner T: Suppression of experimental autoimmune encephalomyelitis by cannabinoids. Immunopharmacology. 1994, 28 (3): 209-214. 10.1016/0162-3109(94)90056-6.
Zhang J, Hoffert C, Vu HK, Groblewski T, Ahmad S, O'Donnell D: Induction of CB2 receptor expression in the rat spinal cord of neuropathic but not inflammatory chronic pain models. Eur J Neurosci. 2003, 17 (12): 2750-2754. 10.1046/j.1460-9568.2003.02704.x.
Arevalo-Martin A, Vela JM, Molina-Holgado E, Borrell J, Guaza C: Therapeutic action of cannabinoids in a murine model of multiple sclerosis. J Neurosci. 2003, 23 (7): 2511-2516.
Croxford JL, Miller SD: Immunoregulation of a viral model of multiple sclerosis using the synthetic cannabinoid R+WIN55,212. J Clin Invest. 2003, 111 (8): 1231-1240. 10.1172/JCI200317652.
Ibrahim MM, Deng H, Zvonok A, Cockayne DA, Kwan J, Mata HP, Vanderah TW, Lai J, Porreca F, Makriyannis A, Malan TPJ: Activation of CB2 cannabinoid receptors by AM1241 inhibits experimental neuropathic pain: pain inhibition by receptors not present in the CNS. Proc Natl Acad Sci U S A. 2003, 100 (18): 10529-10533. 10.1073/pnas.1834309100.
Pryce G, Ahmed Z, Hankey DJ, Jackson SJ, Croxford JL, Pocock JM, Ledent C, Petzold A, Thompson AJ, Giovannoni G, Cuzner ML, Baker D: Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain. 2003, 126 (Pt 10): 2191-2202. 10.1093/brain/awg224.