COVID-19 vaccines: their effectiveness against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its emerging variants

Rashed Noor1, Saadia Shareen1, A. H. M. Muntasir Billah2
1Department of Life Sciences (DLS), School of Environment and Life Sciences (SELS), Independent University, Bangladesh (IUB), Plot 16, Block B, Aftabuddin Ahmed Road, Bashundhara, Dhaka, 1229, Bangladesh
2Department of Cardiology, Kolling Institute of Medical Research, Northern Sydney Local Health District, St Leonards, NSW, 2065, Australia

Tóm tắt

Abstract Background The world has been suffering from the COVID-19 pandemic (officially declared by WHO in March 2020), caused by the severe acute respiratory β-coronavirus 2 (SARS-CoV-2) since the last week of December 2019. The disease was initially designated as a Public Health Emergency of International Concern on January 30, 2020. In order to protect the health of mass public, an array of research on drugs and vaccines against SARS-CoV-2 has been conducted globally. However, the emerging variants of SARS-CoV-2, i.e., Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), and Delta (B.1.617.2) variants which evolved in late 2020 and the Omicron variant (B.1.1.529) which emerged in November 2021 along with its subvariant BA.2 which was first identified in India and South Africa in late December 2021, have raised the doubt about the efficiency of the currently used vaccines especially in terms of the consistent potential to produce neutralizing antibodies targeting the viral spike (S) protein. Main body of the abstract The present review discussed the functional details of major vaccines regarding their efficiency against such variants during the pandemic. Overall, the mRNA vaccines have shown around 94% effectiveness; the adenovector vaccine showed approximately 70% efficacy, whereas Sputnik V vaccines showed around 92% effectiveness; the inactivated whole-virus vaccine CoronaVac/PiCoVacc and BBIBP-CorV showed a varying effectiveness of 65–86% according to the geographic locations; the subunit vaccine NVX-CoV2373 has shown 60–89% effectiveness along with the global regions against the wild-type SARS-CoV-2 strain. However, reduced effectiveness of these vaccines against the SARS-CoV-2 variants was noticed which is suggestive for the further administration of booster dose. Short conclusion Maximum variants of SARS-CoV-2 emerged during the second wave of COVID-19; and extensive studies on the viral genomic sequences from all geographical locations around the world have been conducted by an array of groups to assess the possible occurrence of mutations(s) specially within the receptor binding domain of the viral spike (S) protein. Mutational similarities and the new or critical mutations within all variants have been clearly identified so far. The study of effectiveness of the currently used vaccines is also ongoing. The persistence of memory B cell action and the other immune components as well as the administration of booster dose is expected to mitigate the disease.

Từ khóa


Tài liệu tham khảo

Ai J, Zhang H, Zhang Y, Lin K, Zhang Y, Wu J et al (2022) Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost. Emerg Microbes Infect 11(1):337–343. https://doi.org/10.1080/22221751.2021.2022440

Asaduzzaman SAI, Zakaria A, Kheya IS, Fahad N, Sikandar YB, Noor R (2020) A comparative study between the severe acute respiratory syndrome-coronavirus-2, severe acute respiratory syndrome coronavirus, and the Middle East respiratory syndrome coronavirus. Biomed Biotechnol Res J 4:S65-74. https://doi.org/10.4103/bbrj.bbrj_99_20

Barda N, Dagan N, Cohen C, Hernán MA, Lipsitch M, Kohane IS, Reis BY, Balicer RD (2021) Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. Lancet 398(10316):2093–2100. https://doi.org/10.1016/S0140-6736(21)02249-2

Cevik M, Grubaugh ND, Iwasaki A, Openshaw P (2021) COVID-19 vaccines: keeping pace with SARS-CoV-2 variants. Cell 184(20):5077–5081. https://doi.org/10.1016/j.cell.2021.09.010

Chakraborty C, Sharma AR, Bhattacharya M, Agoramoorthy G, Lee SS (2021a) Evolution, mode of transmission, and mutational landscape of newly emerging SARS-CoV-2 variants. Mbio 12(4):e0114021. https://doi.org/10.1128/mBio.01140-21

Chakraborty C, Bhattacharya M, Sharma AR (2021b) Present variants of concern (VOC) and variants of interest (VOI) of SARS-CoV-2: their significant mutations in S-glycoprotein, infectivity, re-infectivity, immune escape, and vaccines activity. Rev Med Virol. https://doi.org/10.1002/rmv.2270

Collie S, Champion J, Moultrie H, Bekker LG, Gray G (2021) Effectiveness of BNT162b2 vaccine against omicron variant in South Africa. N Engl J Med. https://doi.org/10.1056/NEJMc2119270

Corum J, Zimmer C (2021) How bharat biotech’s vaccine works. The New York Times. Updated May 7, 2021. https://www.nytimes.com/interactive/2021/health/bharat-biotech-covid-19-vaccine.html. Accessed 16 May 2021

Diseases TLI (2022) Emerging SARS-CoV-2 variants: shooting the messenger. Lancet Infect Dis 22(1):1. https://doi.org/10.1016/S1473-3099(21)00770-2

Drosten C, Günther S, Preiser W, van der Werf S, Brodt HR, Becker S et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20):1967–1976. https://doi.org/10.1056/NEJMoa030747

Ferré VM, Peiffer-Smadja N, Visseaux B, Descamps D, Ghosn J, Charpentier C (2021) Omicron SARS-CoV-2 variant: what we know and what we don’t. Anaesth Crit Care Pain Med 41(1):100998. https://doi.org/10.1016/j.accpm.2021.100998

Forni G, Mantovani A (2021) COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ 28(2):626–639. https://doi.org/10.1038/s41418-020-00720-9

Gaebler C, Wang Z, Lorenzi JCC et al (2021) Evolution of antibody immunity to SARS-CoV-2. Nature 591:639–644. https://doi.org/10.1038/s41586-021-03207-w

Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M et al (2020) Development of an inactivated vaccine candidate for SARS-CoV-2. Science 369(6499):77–81. https://doi.org/10.1126/science.abc1932

Gómez CE, Perdiguero B, Esteban M (2021) Emerging SARS-CoV-2 variants and impact in global vaccination programs against SARS-CoV-2/COVID-19. Vaccines (basel) 9(3):243. https://doi.org/10.3390/vaccines9030243

Heinz FX, Stiasny K (2021) Profiles of current COVID-19 vaccines. Wien Klin Wochenschr 133(7–8):271–283. https://doi.org/10.1007/s00508-021-01835-w

Huang Y, Yang C, Xu XF, Xu W, Liu SW (2020) Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol Sin 41:1141–1149. https://doi.org/10.1038/s41401-020-0485-4

Kahn JS, McIntosh K (2005) History and recent advances in coronavirus discovery. Pediatr Infect Dis J 24(11):S223–S227. https://doi.org/10.1097/01.inf.0000188166.17324.60

Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S et al (2020) Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med 383(24):2320–2332. https://doi.org/10.1056/NEJMoa2026920

Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T et al (2003) A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348(20):1953–1966. https://doi.org/10.1056/NEJMoa030781

Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO (2021) SARS-CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. NPJ Vaccines 6(1):28. https://doi.org/10.1038/s41541-021-00292-w

Mascellino MT, Di Timoteo F, De Angelis M, Oliva A (2021) Overview of the main anti-SARS-CoV-2 vaccines: mechanism of action, efficacy and safety. Infect Drug Resist 14:3459–3476. https://doi.org/10.2147/IDR.S315727

Muik A, Wallisch AK, Sänger B, Swanson KA, Mühl J, Chen W et al (2021) Neutralization of SARS-CoV-2 lineage B.1.1.7 pseudovirus by BNT162b2 vaccine-elicited human sera. Science. https://doi.org/10.1126/science.abg6105

Noor R (2020) Antiviral drugs against severe acute respiratory syndrome coronavirus 2 infection triggering the coronavirus disease-19 pandemic. Tzu Chi Med J. https://doi.org/10.4103/tcmj.tcmj_100_20

Noor R (2021a) A review on the effectivity of the current COVID-19 drugs and vaccines: are they really working against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants? Curr Clin Microbiol Rep 3:1–8. https://doi.org/10.1007/s40588-021-00172-w

Noor R (2021b) A comparative review of pathogenesis and host innate immunity evasion strategies among the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV). Arch Microbiol 7:1–9. https://doi.org/10.1007/s00203-021-02265-y

Noor R (2021c) Developmental status of the potential vaccines for the mitigation of the COVID-19 pandemic and a focus on the effectiveness of the Pfizer-BioNTech and Moderna mRNA vaccines. Curr Clin Microbiol Rep. https://doi.org/10.1007/s40588-021-00162-y

Noor R (2022) A review on the induction of host immunity by the current COVID-19 vaccines and a brief non-pharmaceutical intervention to mitigate the pandemic. Bull Natl Res Cent. https://doi.org/10.1186/s42269-022-00719-x

Noor R, Maniha SM (2020) A brief outline of respiratory viral disease outbreaks: 1889—till date on the public health perspectives. VirusDis 31:441–449. https://doi.org/10.1007/s13337-020-00628-5

Pollet J, Chen WH, Strych U (2021) Recombinant protein vaccines, a proven approach against coronavirus pandemics. Adv Drug Deliv Rev 170:71–82. https://doi.org/10.1016/j.addr.2021.01.001

Poudel S, Ishak A, Perez-Fernandez J, Garcia E, León-Figueroa DA, Romaní L et al (2021) Highly mutated SARS-CoV-2 Omicron variant sparks significant concern among global experts—what is known so far? Travel Med Infect Dis 45:102234. https://doi.org/10.1016/j.tmaid.2021.102234

Pushparajah D, Jimenez S, Wong S, Alattas H, Nafissi N, Slavcev RA (2021) Advances in gene-based vaccine platforms to address the COVID-19 pandemic. Adv Drug Deliv Rev 170:113–141. https://doi.org/10.1016/j.addr.2021.01.003

Rubin R (2021) COVID-19 vaccine makers plan for annual boosters, but it’s not clear they’ll be needed. JAMA 326(22):2247–2249. https://doi.org/10.1001/jama.2021.21291

Sanches PRS, Charlie-Silva I, Braz HLB, Bittar C, Freitas Calmon M, Rahal P, Cilli EM (2021) Recent advances in SARS-CoV-2 Spike protein and RBD mutations comparison between new variants Alpha (B.1.1.7, United Kingdom), Beta (B.1.351, South Africa), Gamma (P.1, Brazil) and Delta (B.1.617.2, India). J Virus Erad 7(3):1054. https://doi.org/10.1016/j.jve.2021.100054

Saxena SK, Kumar S, Ansari S, Paweska JT, Maurya VK, Tripathi AK, Abdel-Moneim AS (2021) Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol. https://doi.org/10.1002/jmv.27524

Shinde V, Bhikha S, Hoosain Z, Archary M, Bhorat Q, Fairlie L et al (2021) Efficacy of NVX-CoV2373 Covid-19 vaccine against the B.1.351 variant. N Engl J Med 384(20):1899–1909. https://doi.org/10.1056/NEJMoa2103055

Stephenson KE, Le Gars M, Sadoff J, de Groot AM, Heerwegh D, Truyers C et al (2021) Immunogenicity of the Ad26.COV2.S vaccine for COVID-19. JAMA 325(15):1535–1544. https://doi.org/10.1001/jama.2021.3645

Thye AY, Law JW, Pusparajah P, Letchumanan V, Chan KG, Lee LH (2021) Emerging SARS-CoV-2 variants of concern (VOCs): an impending global crisis. Biomedicines 9(10):1303. https://doi.org/10.3390/biomedicines9101303

Tian JH, Patel N, Haupt R, Zhou H, Weston S, Hammond H et al (2021) SARS-CoV-2 spike glycoprotein vaccine candidate NVX-CoV2373 immunogenicity in baboons and protection in mice. Nat Commun 12(1):372. https://doi.org/10.1038/s41467-020-20653-8

Tyrrell DA, Bynoe ML (1966) Cultivation of viruses from a high proportion of patients with colds. Lancet 1(7428):76–77. https://doi.org/10.1016/s0140-6736(66)92364-6

Ura T, Yamashita A, Mizuki N, Okuda K, Shimada M (2021) New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine 39(2):197–201. https://doi.org/10.1016/j.vaccine.2020.11.054

Wadman M, Cohen J (2021) Novavax vaccine delivers 89 % efficacy against COVID-19 in U.K.—but is less potent in South Africa. Science. https://doi.org/10.1126/science.abg8101

Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W et al (2020) Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 182(3):713-721.e9. https://doi.org/10.1016/j.cell.2020.06.008

Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y et al (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. https://doi.org/10.1101/2021.01.25.428137. Update in: Nature. 2021;593(7857):130–135

WHO (World Health Organization) Coronavirus diseases (COVID-19) Dashboard (2022) Updated on 5:13pm CET, 10 February 2022. https://covid19.who.int/. Accessed 10 Feb 2022

Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B et al (2021) SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med 27(4):622–625. https://doi.org/10.1038/s41591-021-01285-x

World Health Organization (2020) Novel coronavirus (2019-nCoV). Situation report 1. World Health Organization, Geneva. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200121-sitrep-1-2019-ncov.pdf?sfvrsn

Yadav PD, Gupta N, Nyayanit DA, Sahay RR, Shete AM, Majumdar T, Patil S, Kaur H, Nikam C, Pethani J, Patil DY, Aggarwal N, Vijay N, Narayan J (2021) Imported SARS-CoV-2 V501Y.V2 variant (B.1.351) detected in travelers from South Africa and Tanzania to India. Travel Med Infect Dis. https://doi.org/10.1016/j.tmaid

Zhang L, Jackson CB, Mou H, Ojha A, Rangarajan ES, Izard T, Farzan M, Choe H. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. bioRxiv. 2020. https://doi.org/10.1101/2020.06.12.148726. Update in: Nat Commun. 2020 26;11(1):6013