Vắc-xin COVID-19: sự phát triển nhanh chóng, hệ lụy, thách thức và triển vọng tương lai
Tóm tắt
COVID-19 đã ảnh hưởng đến hàng triệu người và tạo ra gánh nặng chưa từng có cho các hệ thống chăm sóc sức khỏe cũng như nền kinh tế toàn cầu. Hiện tại, không có liệu pháp quyết định cho COVID-19 hoặc các biến chứng liên quan. Hy vọng duy nhất để làm giảm thiểu đại dịch này là thông qua vắc-xin. Các vắc-xin COVID-19 đang được phát triển nhanh chóng, so với các loại vắc-xin truyền thống, và đang được phê duyệt thông qua Cấp phép Sử dụng Khẩn cấp (EUA) trên toàn cầu. Đến nay, có 232 ứng viên vắc-xin. Một trăm bảy mươi hai trong số đó đang trong giai đoạn phát triển tiền lâm sàng và 60 trong giai đoạn phát triển lâm sàng, trong đó 9 loại đã được phê duyệt theo EUA bởi các quốc gia khác nhau. Bao gồm Vương quốc Anh (UK), Hoa Kỳ (USA), Canada, Nga, Trung Quốc và Ấn Độ. Việc phân phối vắc-xin đến tất cả mọi người, với một loại vắc-xin an toàn và hiệu quả, là ưu tiên hàng đầu của tất cả các quốc gia để chống lại đại dịch COVID-19 này. Tuy nhiên, quy trình phát triển vắc-xin COVID-19 và EUA nhanh chóng hiện tại có nhiều câu hỏi chưa có lời giải. Thêm vào đó, sự biến đổi của chủng SARS-CoV-2 tại Vương quốc Anh và Nam Phi, và sự lây lan gia tăng của nó trên toàn cầu đã đặt ra nhiều thách thức hơn, cả cho các nhà phát triển vắc-xin cũng như các chính phủ trên toàn thế giới. Trong bài đánh giá này, chúng tôi đã thảo luận về các loại vắc-xin khác nhau với ví dụ về vắc-xin COVID-19, sự phát triển nhanh chóng của chúng so với vắc-xin truyền thống, các thách thức liên quan và triển vọng tương lai.
Từ khóa
#COVID-19 #vắc-xin #phát triển nhanh chóng #thách thức #tương laiTài liệu tham khảo
Gupta A, Kashte S, Gupta M, Rodriguez HC, Gautam SS. Mesenchymal stem cells and exosome therapy for COVID-19: current status and future perspective. Hum Cell. 2020;33:907–18. https://doi.org/10.1007/s13577-020-00407-w.
WHO Coronavirus Disease (COVID-19) Dashboard [Internet]. WHO (World Heal. Organ. 2021. Available from: https://covid19.who.int/. Cited 3 Jan 2021.
Khuroo MS. Chloroquine and hydroxychloroquine in coronavirus disease 2019 (COVID-19). Facts, fiction and the hype: a critical appraisal. Int J Antimicrob Agents. 2020;56:106101.
Draft Landscape of COVID-19 candidate vaccines—29 December 2020 [Internet]. World Heal. Organ. 2020, p. 12. Available from: www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. Cited 30 Dec 2020.
Dai X, Xiong Y, Li N, Jian C. Vaccine types. In; Vaccines-the history and future. IntechOpen. 2001, pp 1–9.
Khuroo MS, Khuroo M, Khuroo MS, Sofi AA, Khuroo NS. COVID-19 vaccines: a race against time in the middle of death and devastation. J Clin Exp Hepatol. 2020. https://doi.org/10.1016/j.jceh.2020.06.003.
Kaur SP, Gupta V. COVID-19 vaccine: a comprehensive status report. Virus Res. 2020;288:198114. https://doi.org/10.1016/j.virusres.2020.198114.
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2019;11:1620. https://doi.org/10.1038/s41467-020-15562-9.
Cunningham AL, Garçon N, Leo O, Friedland LR, Strugnell R, Laupèze B, et al. Vaccine development: from concept to early clinical testing. Vaccine. 2016;34:6655–64. https://doi.org/10.1016/j.vaccine.2016.10.016.
Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586:516–27. https://doi.org/10.1038/s41586-020-2798-3.
Emergency Use Authorization for Vaccines to Prevent COVID-19 Guidance for Industry [Internet]. Food Drug Adm. 2020. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/emergency-use-authorization-vaccines-prevent-covid-19. Cited 14 Dec 2020.
Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci. 2017;114:E7348–57.
FDA Takes Key Action in Fight Against COVID-19 By Issuing Emergency Use Authorization for First COVID-19 Vaccine [Internet]. FDA. 2020. Available from: https://www.fda.gov/news-events/press-announcements/fda-takes-key-action-fight-against-covid-19-issuing-emergency-use-authorization-first-covid-19. Cited 15 Dec 2020.
WHO issues its first emergency use validation for a COVID-19 vaccine and emphasizes need for equitable global access [Internet]. World Health Organ. Available from: www.who.int/news/item/31–12–2020-who-issues-its-first-emergency-use-validation-for-a-covid-19-vaccine-and-emphasizes-need-for-equitable-global-access. Cited 01 Jan 2021.
Pfizer. Aa phase 1/2/3, placebo-controlled, randomized, observer-blind, dose-finding study to evaluate the safety, tolerability, immunogenicity, and efficacy of sars-cov-2 rna vaccine candidates against covid-19 in healthy individuals. 2020. p 1–146. https://pfe-pfizercom-d8-prod.s3.amazonaws.com/2020-11/C4591001_Clinical_Protocol_Nov2020.pdf.
Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, et al. Safety and immunogenicity of two RNA-based covid-19 vaccine candidates. N Engl J Med. 2020;383:2439–50.
Mulligan MJ, Lyke KE, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Phase I / II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature. 2020;586:589–93. https://doi.org/10.1038/s41586-020-2639-4.
Holm M, Poland G. Critical aspects of packaging, storage, preparation, and administration of mRNA and adenovirus-vectored COVID-19 vaccines for optimal efficacy. Vaccine. 2020. https://doi.org/10.1016/j.vaccine.2020.12.017.
Moderna’s COVID-19 vaccine candidate meets its primary efficacy endpoint in the first interim analysis of the phase 3 COVE study [Internet]. 2020. Available from: https://investors.modernatx.com/news-releases/news-release-details/modernas-covid-19-vaccine-candidate-meets-its-primary-efficacy. Cited 17 Nov 2020.
Coler RN, Mccullough MP, Chappell JD, Denison MR, Stevens LJ, Morabito KM, et al. An mRNA vaccine against SARS-CoV-2 — preliminary report. N Engl J Med. 2020;383:1920–31.
Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, Mcdermott AB, et al. Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. N Engl J Med 2020;383:2427–38.
Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-barnum S, Gillespie RA, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature. 2020;586:567–71. https://doi.org/10.1038/s41586-020-2622-0.
Flach B, Connell SO, Bock KW, Minai M, Nagata BM, Andersen H, et al. Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates. N Engl J Med. 2020;383:1544–55.
Moderna Announces Phase 3 COVE Study of mRNA Vaccine Against COVID-19 (mRNA-1273) Begins [Internet]. 2020. Available from: https://investors.modernatx.com/news-releases/news-release-details/moderna-announces-phase-3-cove-study-mrna-vaccine-against-covid. Cited 17 Nov 2020.
AstraZeneca’s COVID-19 vaccine authorised for emergency supply in the UK [Internet]. AstraZeneca. Available from: https://www.astrazeneca.com/media-centre/press-releases/2020/astrazenecas-covid-19-vaccine-authorised-in-uk.html. Cited 30 Dec 2020.
India’s drugs experts approve AstraZeneca, local COVID vaccines [Internet]. Reuters. 2021. Available from: https://www.reuters.com/article/health-coronavirus-india-vaccine/indias-drugs-experts-approve-astrazeneca-local-covid-vaccines-idUSKBN29707B. Cited 3 Jan 2021.
Doremalen N Van, Lambe T, Spencer A, Belij-rammerstorfer S, Purushotham JN, Port JR, et al. ChAdOx1 nCoV-19 vaccination prevents SARS-CoV-2 pneumonia in rhesus macaques. Nature. 2020;586:578–82.
Graham SP, Mclean RK, Spencer AJ, Belij-Rammerstorfer S, Wright D, Ulaszewska M, et al. Evaluation of the immunogenicity of prime-boost vaccination with the replication-deficient viral vectored COVID-19 vaccine candidate ChAdOx1 nCoV-19. NPJ Vaccines. 2020;5:1–6. https://doi.org/10.1038/s41541-020-00221-3.
Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1 / 2, single-blind, randomised controlled trial. Lancet. 2020;396:467–78.
Clinical study protocol - amendment 2 AZD1222 - D8110C00001. A phase III randomized, double-blind, placebo-controlled multicenter study in adults to determine the safety, efficacy, and immunogenicity of AZD1222, a non-replicating ChAdOx1 vector vaccine, for the prevention of COVID-19. AstraZeneca. 2020. p. 1–111. https://astrazenecagrouptrials.pharmacm.com/ST/Submission/View?id=26198.
Sinovac’s Coronavirus vaccine candidate approved for emergency use in China [Internet]. Reuters. 2020. Available from: https://www.reuters.com/article/us-health-coronavirus-china-vaccines/sinovacs-coronavirus-vaccine-candidate-approved-for-emergency-use-in-china-source-idUSKBN25O0Z3. Cited 15 Dec 2020.
Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;81:77–81.
Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years. Lancet Infect Dis. 2020. https://doi.org/10.1016/S1473-3099(20)30843-4.
Brazil’s National Health Surveillance Agency Authorizes Resumption of the Phase III Clinical Trial of CoronaVacTM [Internet]. 2020. Available from: http://www.sinovac.com/?optionid=754&auto_id=915. Cited 18 Nov 2020.
Taylor A. China’s COVID vaccines are already being distributed. But how do they work, and where are they up to in trials? [Internet]. Conversat. 2020. Available from: https://theconversation.com/chinas-covid-vaccines-are-already-being-distributed-but-how-do-they-work-and-where-are-they-up-to-in-trials-151589. Cited 15 Dec 2020.
Xia S, Duan K, Zhang Y, Zhao D, Zhang H, Xie Z, Yang Y. Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes interim analysis of 2 randomized clinical trials. JAMA. 2020;324:951–60.
Babira VF, Borisevich SV, Naroditsky BS, Gintsburg AL. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet. 2020;396:887–97. https://doi.org/10.1016/S0140-6736(20)31866-3.
Sputnik V. The first registered vaccine against COVID-19. [Internet]. 2020. Available from: https://sputnikvaccine.com/about-vaccine/. Cited 19 Nov 2020.
Wang H, Zhang Y, Huang B, Gao GF, Tan W, Yang X. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-ll article development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell. 2020;182:713–21.
Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2020. https://doi.org/10.1016/S1473-3099(20)30831-8.
Russia approves second COVID-19 vaccine after preliminary trials [Internet]. Reuters. 2020. Available from: https://in.reuters.com/article/us-health-coronavirus-russia-vaccine-idINKBN26Z1T3. Cited 15 Dec 2020.
Russia begins mass trials of second coronavirus vaccine [Internet]. Reuters. 2020. Available from: https://www.reuters.com/article/health-coronavirus-russia-cases/update-1-russia-begins-mass-trials-of-second-coronavirus-vaccine-idUSL1N2IG0HG?edition-redirect=ca. Cited 15 Dec 2020.
Yadav P, Mohandas S. Remarkable immunogenicity and protective e cacy of BBV152 , an inactivated SARS-CoV-2 vaccine in rhesus macaques [Internet]. Res. Sq. 2020. p. 1–17. Available from: https://www.researchsquare.com/article/rs-65715/v1. Cited 19 Nov 2020.
COVAXINTM—India’s First indigenous COVID-19 Vaccine [Internet]. 2020. Available from: https://www.bharatbiotech.com/covaxin.html. Cited 18 Nov 2020.
Johnson & Johnson Initiates Pivotal Global Phase 3 Clinical Trial of Janssen’s COVID-19 Vaccine Candidate [Internet]. 2020. Available from: https://www.jnj.com/johnson-johnson-initiates-pivotal-global-phase-3-clinical-trial-of-janssens-covid-19-vaccine-candidate. Cited 20 Nov 2020.
Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM, Berghmans PJ. Safety and immunogenicity of the Ad26.COV2.S COVID-19 vaccine candidate: interim results 2 of a phase 1/2a, double-blind, randomized, placebo-controlled trial. MedRxiv. 2020;94:1–28.
Tostanoski LH, He X, Martinez DR, Rutten L, Bos R, Van MD, et al. Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques. Nature. 2020;586:583–8. https://doi.org/10.1038/s41586-020-2607-z.
Tostanoski LH, Wegmann F, Martinot AJ, Loos C, Mcmahan K, Mercado NB, et al. Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters. Nat Med. 2020;26:1694–700. https://doi.org/10.1038/s41591-020-1070-6.
Novavax Awarded Funding from CEPI for COVID-19 Vaccine Development [Internet]. 2020. Available from: https://ir.novavax.com/news-releases/news-release-details/novavax-awarded-funding-cepi-covid-19-vaccine-development. Cited 20 Nov 2020.
Keech C, Albert G, Cho I, Robertson A, Reed P, Neal S, et al. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N Engl J Med. 2020;383:1–13.
Novavax COVID-19 Vaccine Granted Fast Track Designation by U.S. FDA [Internet]. 2020. Available from: https://ir.novavax.com/news-releases/news-release-details/novavax-covid-19-vaccine-granted-fast-track-designation-us-fda. Cited 20 Nov 2020.
Novavax Provides Phase 3 COVID-19 Vaccine Clinical Development Update [Internet]. 2020. Available from: https://ir.novavax.com/news-releases/news-release-details/novavax-provides-phase-3-covid-19-vaccine-clinical-development. Cited 20 Nov 2020.
COVAX announces additional deals to access promising COVID-19 vaccine candidates; plans global rollout starting Q1 2021 [Internet]. Glob. Alliance Vaccines Immunizations. 2020. Available from: https://www.gavi.org/news/media-room/covax-announces-additional-deals-access-promising-covid-19-vaccine-candidates-plans. Cited 23 Dec 2020.
Craig AM, Hughes BL, Swamy GK. COVID-19 Vaccines in Pregnancy. Am J Obstet Gynecol MFM. 2021. https://doi.org/10.1016/j.ajogmf.2020.100295.
Krubiner CB, Faden RR, Karron RA, Little MO, Lyerly AD, Abramson JS, et al. Pregnant women and vaccines against emerging epidemic threats: ethics guidance for preparedness, research, and response. Vaccine. 2021;39:85–120. https://doi.org/10.1016/j.vaccine.2019.01.011.
Doherty M, Buchy P, Standaert B, Giaquinto C, Cohrs DP. Vaccine impact: benefits for human health. Vaccine. 2016;34:6707–14. https://doi.org/10.1016/j.vaccine.2016.10.025.
Bartsch SM, Shea KJO, Ferguson MC, Bottazzi ME, Wedlock PT, Strych U, et al. Vaccine efficacy needed for a COVID-19 Coronavirus vaccine to prevent or stop an epidemic as the sole intervention. Am J Prev Med. 2020;59:493–503. https://doi.org/10.1016/j.amepre.2020.06.011.
Sharma O, Sultan AA, Ding H, Triggle CR. A review of the progress and challenges of developing a vaccine for COVID-19. Front Immunol. 2021;11:1–17.
Savarino S, Zambrano B, Moureau A, Khromava A, Moodie Z, Westling T, et al. Effect of Dengue serostatus on Dengue vaccine safety and efficacy. N Engl J Med. 2018;379:327–40.
Coronavirus (COVID-19) vaccine [Internet]. NHS. 2020. Available from: https://www.nhs.uk/conditions/coronavirus-covid-19/coronavirus-vaccination/coronavirus-vaccine/. Cited 28 Dec 2020.
What to Expect after Getting a COVID-19 Vaccine [Internet]. Centers Dis. Control Prev. 2020. Available from: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/expect/after.html. Cited 28 Dec 2020.
Fact sheet for recipients and caregivers, Emergency Use Authorization (EUA) of the Pfizer-Biontech COVID-19 vaccine to prevent Coronavirus disease 2019 (COVID-19) in individuals 16 years of age and older [Internet]. FDA. 2020. Available from: https://www.fda.gov/media/144414/download. Cited 28 Dec 2020.
Finland reports first adverse reaction to Coronavirus vaccine [Internet]. Yle. 2021. Available from: https://yle.fi/uutiset/osasto/news/finland_reports_first_adverse_reaction_to_coronavirus_vaccine/11722156. Cited 3 Jan 2021.
WHO target product profiles for COVID-19 vaccines version 3–29 April 2020. WHO World Heal Organ. 2020, p. 1–7. https://www.who.int/publications/m/item/who-target-product-profiles-for-covid-19-vaccines.
Poland GA, Ovsyannikova IG, Crooke SN, Kennedy RB. SARS-CoV-2 vaccine development: current status. Mayo Clin Proc. 2020;95:2172–88. https://doi.org/10.1016/j.mayocp.2020.07.021.
Jarrett S, Yang L, Pagliusi S. Roadmap for strengthening the vaccine supply chain in emerging countries: manufacturers ’ perspectives. Vaccine. 2020;5:100068. https://doi.org/10.1016/j.jvacx.2020.100068.
Pagliusi S, Jarrett S, Hayman B, Kreysa U, Prasad SD, Reers M. Emerging manufacturers engagements in the COVID À 19 vaccine research, development and supply. Vaccine. 2020;38:5418–23.
GAVI—The Global Alliance for Vaccines and Immunizations [Internet]. WHO Glob. Heal. Work. Alliance. 2020. Available from: www.who.int/workforcealliance/members_partners/member_list/gavi/en/. Cited 23 Dec 2020.
Hwang A, Veira C, Malvolti S, Cherian T, Macdonald N, Steffen C, et al. Global vaccine action plan lessons learned II: stakeholder perspectives. Vaccine. 2020;38:5372–8. https://doi.org/10.1016/j.vaccine.2020.05.048.
Emergency Use Assessment and Listing Procedure (EUAL) for candidate vaccines for use in the context of a public health emergency [Internet]. WHO (World Health Organ. 2015. p. 1–10. Available from: https://www.who.int/medicines/news/EUAL-vaccines_7July2015_MS_(Updated_notes-disclaimers_21Aug2018).pdf?ua=1. Cited 14 Dec 2020.
Emergency use listing procedure for vaccines [Internet]. WHO (World Health Organ. 2020. Available from: https://www.who.int/teams/regulation-prequalification/eul/eulvaccines. Cited 14 Dec 2020.
Macdonald NE, Group W. Vaccine hesitancy: definition, scope and determinants. Vaccine. 2015;33:4161–4.
Reiter PL, Pennell ML, Katz ML. Acceptability of a COVID-19 vaccine among adults in the United States: how many people would get vaccinated ? Vaccine. 2021;38:6500–7. https://doi.org/10.1016/j.vaccine.2020.08.043.