COVID-19 susceptibility: potential of ACE2 polymorphisms

Egyptian Journal of Medical Human Genetics - Tập 21 - Trang 1-8 - 2020
Mayank Chaudhary1
1Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Ambala, India

Tóm tắt

Angiotensin-converting enzyme 2 (ACE2) is a metallopeptidase that primarily functions as a negative regulator of renin angiotensin system (RAS) by converting angiotensin II (Ang II) to angiotensin 1-7. Contrary to this, another RAS component, angiotensin-converting enzyme (ACE) catalyzes synthesis of Ang II from angiotensin I (Ang I) that functions as active compound in blood pressure regulation. This indicates importance of ACE/ACE2 level in regulating blood pressure by targeting Ang II. An outbreak of severe acute respiratory syndrome (SARS) highlighted the additional role of ACE2 as a receptor for SARS coronavirus (SARS-CoV) infection. ACE2 is a functional receptor for SARS-CoV and SARS-CoV-2. Activation of spike (S)-protein by either type II transmembrane serine proteases (TTSPs) or cathepsin-mediated cleavage initiates receptor binding and viral entry. In addition to TTSPs, ACE2 can also be trimmed by ADAM 17 (a disintegrin and metalloproteinase 17) that competes for the same receptor. Cleavage by TTSPs activates ACE2 receptor for binding, whereas ADAM17 releases extracellular fragment called soluble ACE2 (sACE2). Structural studies of both ACE2 and S-protein have found critical sites involved in binding mechanism. In addition to studies on structural motifs, few single-nucleotide polymorphism (SNPs) studies have been done to find an association between genetic variants and SARS susceptibility. Though no association was found in those reports, but seeing the non-reproducibility of SNP studies among different ethnic groups, screening of ACE2 SNPs in individual population can be undertaken. Thus, screening for novel SNPs focussing on recently identified critical regions of ACE2 can be targeted to monitor susceptibility towards coronavirus disease 2019 (COVID-19).

Tài liệu tham khảo

Skeggs LT, Dorer FE, Levine M, Lentz KE, Kahn JR (1980) The biochemistry of the renin-angiotensin system. Adv Exp Med Biol 130:1–27 Lavoie JL, Sigmund CD (2003) Minireview: overview of the renin-angiotensin system-an endocrine and paracrine system. Endocrinology 144(6):2179–2183 Dinh DT, Frauman AG, Johnston CI, Fabiani ME (2001) Angiotensin receptors: distribution, signalling and function. Clin Sci 100(5):481–492 Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N et al (2000) A novel angiotensin converting enzyme related corboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87:E1–E9 Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275(43):33238–33243 South AM, Shaltout HA, Washburn LK, Hendricks AS, Diz DI, Chappell MC (2019) Fetal programming and the angiotensin-(1-7) Axis: a review of the experimental and clinical data. Clin Sci 133(1):55–74 Drosten C, Gunther S, Preiser W, Van der Werf S, Brodt HR, Becker S et al (2003) Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N Engl J Med 348(20):1967–1976 Fouchier RAM, Kuiken T, Schutten M, Van Amerongen G, Van Doornum GJJ, Van der Hoogen BG et al (2003) Aetiology: Koch’s postulates fulfilled for SARS virus. Nature. 423(6937):240 Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA et al (2003) Angiotensin converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965):450–454 Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203(2):631–637 Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J et al (2005) ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 79(23):14614–14621 Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, Li T, Chen Q (2020) High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. Int J Oral Sci 12:8 Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ et al (2020) The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Mil Med Res 7(1):11 Lu H, Stratton CW, Tang YW (2020) Outbreak of pneumonia of unknown etiology in Wuhan, China: the mystery and the miracle. J Med Virol 92(4):401–402 Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382:727–733 Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273 Fam BSO, Vargas-Pinilla P, Amorim CEG, Sortica VA, Bortolini MC (2020) ACE2 diversity in placental mammals reveals the evolutionary strategy of SARS-CoV-2. Genet Mol Biol 43(2):e20200104 Song W, Gui M, Wang X, Xiang Y (2018) Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog 14:e10007236 South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA (2020) Controversies of renin angiotensin system inhibition during the COVID-19 pandemic. Nat Rev Nephrol 16:305–307 Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA et al (2005) Effect of angiotensin converting enzyme inhibition and angiotensin II receptor blockers on cardiac angiotensin converting enzyme 2. Circulation 111:2605–2610 Soler MJ, Ye M, Wysocki J, William J, Lloveras J, Batlle D (2009) Localization of ACE2 in the renal vasculature: amplification by angiotensin II type 1 receptor blockade using Telmisartan. Am J Physiol Renal Physiol 296(2):F398–F405 Burrell LM, Risvanis J, Kubota E, Dean RG, MacDonald PS, Lu S et al (2005) Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J 26(4):369–375 Ramchand J, Patel SK, Srivastava PM, Farouque O, Burrell LM (2018) Elevated plasma angiotensin converting enzyme 2 activity is an independent predictor of major adverse cardiac events in patients with obstructive coronary artery disease. PLoS One 13(6):e0198144 Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al (2005) A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med 11:875–879 Sun P, Lu X, Xu C, Wang Y, Sun W, Xi J (2020) CD-sACE2 inclusion compounds: an effective treatment for coronavirus disease 2019 (COVID-19). J Med Virol. https://doi.org/10.1002/jmv.25804 Gallagher TM (2001) Buchmeier MJ (2001) coronavirus spike proteins in viral entry and pathogenesis. Virology 279(2):371–374 Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S et al (2005) Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24(8):1634–1643 Xiao X, Chakraborti S, Dimitrov AS, Grmatikoff K, Dimitrov DS (2003) The SARS-CoV S glycoprotein: expression and functional characterization. Biochem Biophys Res Commun 312(4):1159–1164 Li F, Berardi M, Li W, Farzan M, Dormitzer PR, Harrison SC (2006) Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J Virol 80(14):6794–6800 Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P (2005) Inhibitors of Cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci 102(33):11876–11881 Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, Taguchi F (2010) Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol 84(24):12658–12664 Bertram S, Heurich A, Lavender H, Gierer S, Danisch S, Perin P et al (2012) Influenza and SARS coronavirus activating proteases TMPRSS2 and HAT are expressed at multiple sites in human respiratory and gastrointestinal tracts. PLoS One 7:e35876 Ciaglia E, Vecchione C, Puca AA (2020) COVID-19 infection and circulating ACE2 levels: protective role in women and children. Front Pediatr 8:206 Lambert DW, Yarski M, Warner FJ, Thornhill P, Parkin ET, Smith AI et al (2005) Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe acute respiratory syndrome coronavirus (SARS-CoV) receptor, angiotensin converting enzyme 2 (ACE2). J Biol Chem 280(34):30113–30119 Heurich A, Winkler HH, Gierer S, Liepold T, Jahn O, Pohlmann S (2014) TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol 88(2):1293–1307 Jia HP, Look DC, Tan P, Shi L, Hickey M, Gakhar L et al (2009) Ectodomain shedding of angiotensin converting enzyme 2 in human airway epithelia. Am J Physiol Lung Cell Mol Physiol 297(1):L84–L96 Lai ZW, Hanchapola I, Steer DL, Smith AI (2011) Angiotensin converting enzyme 2 ectodomain shedding cleavage-site identification: determinants and constraints. Biochemistry 50(23):5182–5194 Yi CE, Ba L, Zhang L, Ho DD, Chen Z (2005) Single amino acid substitutions in the severe acute respiratory syndrome coronavirus spike glycoprotein determine viral entry and immunogenicity of a major neutralizing domain. J Virol 79(18):11638–11646 Struck AW, Axmann M, Pfefferle S, Drosten C, Meyer B (2012) A hexapeptide of the receptor binding domain of SARS coronavirus spike protein blocks viral entry into host cells via the human receptor ACE2. Antivir Res 94(3):288–296 Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T et al (2004) ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem 279:17996–18007 Chen Y, Liu L, Wei Q, Zhu H, Jiang H, Tu X, Qin C, Chen Z (2008) Rhesus angiotensin converting enzyme 2 supports entry of severe acute respiratory syndrome coronavirus in chinese macaques. Virology 381(1):89–97 Patnaik M, Pati P, Swain SN, Mohapatra MK, Dwibedi B, Kar SK, Ranjit M (2014) Association of angiotensin converting enzyme and angiotensin converting enzyme 2 gene polymorphisms with essential hypertension in the population of Odisha, India. Ann Hum Biol 41(2):145–152 Pan Y, Wang T, Li Y, Guan T, Lai Y, Shen Y et al (2018) Association of ACE2 polymorphisms with susceptibility to essential hypertension in dyslipidemia in Xinjiang, China. Lipids Health Dis 17:241 Fan Z, Wu G, Yue M, Ye J, Chen Y, Xu B et al (2019) Hypertension and hypertensive left ventricular hypertrophy are associated with ACE2 genetic polymorphism. Life Sci 225:39–45 Chiu RWK, Tang NLS, Hui DSC, Chung GTY, Chim SSC, Chan KCA et al (2004) ACE2 gene polymorphisms do not affect outcome of severe acute respiratory syndrome. Clin Chem 50(9):1683–1686 Itoyama S, Keicho N, Hijikata M, Quy T, Phi NC, Long HT et al (2005) Identification of an alternative 5’-untranslated exon and new polymorphisms of angiotensin converting enzyme 2 gene: lack of association with SARS in Vietnamese population. Am J Med Genet A 136(1):52–57 Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM et al (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725 Kleine-Weber H, Schroeder S, Kruger N, Prokscha A, Naim HY, Muller MA et al (2020) Polymorphisms in dipeptidyl peptidase 4 reduce host cell entry of Middle East respiratory syndrome coronavirus. Emerg Microb Infect 9(1):155–168 Pedersen KB, Chhabra KH, Nguyen VK, Xia H, Lazartigues E (2013) The transcription factor HNF1α induces expression of angiotensin converting enzyme 2 (ACE2) in pancreatic islets from evolutionarily conserved promoter motifs. Biochim Biophys Acta 1829(11):1225–1235 Devaux CA, Rolain JM, Raoult D (2020) ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure and COVID-19 disease outcome. J Microbiol Immunol Infect 53(3):425–435 Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X et al (2020) Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov 6:11 Wooster L, Nicholson CJ, Sigurslid HH, Cardenas CLL, Malhotra R. Polymorphisms in the ACE2 locus associate with severity of COVID-19 infection. medRxiv 2020; doi:10.1101/2020.06.18.20135152. Torre-Fuentes L, Matias-Guiu J, Hernandez-Lorenzo L, Montero-Escribano P, Pytel V, Porta-Etessam J et al (2020) ACE2, TMPRSS2 and Furin variants and SARS-CoV2 infection in Madrid, Spain. J Med Virol. https://doi.org/10.1002/jmv.26319 Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L et al (2020) New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC Med 18(1):216 Badawi A (2020) Hypercytokinemia and pathogen-host interaction in COVID-19. J Inflamm Res 13:255–261 Yang J, Li H, Hu S, Zhou Y (2020) ACE2 correlated with immune infiltration serves as a prognostic biomarker in endometrial carcinoma and renal papillary cell carcinoma: implication for COVID-19. Aging 12(8):6518–6535