COVID-19 and myocarditis: a review of literature
Tóm tắt
Myocarditis has been discovered to be a significant complication of coronavirus disease 2019 (COVID-19), a condition caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. COVID-19 myocarditis seems to have distinct inflammatory characteristics, which make it unique to other viral etiologies. The incidence of COVID-19 myocarditis is still not clear as a wide range of figures have been quoted in the literature; however, it seems that the risk of developing myocarditis increases with more severe infection. Furthermore, the administration of the mRNA COVID-19 vaccine has been associated with the development of myocarditis, particularly after the second dose. COVID-19 myocarditis has a wide variety of presentations, ranging from dyspnea and chest pain to acute heart failure and possibly death. It is important to catch any cases of myocarditis, particularly those presenting with fulminant myocarditis which can be characterized by signs of heart failure and arrythmias. Initial work up for suspected myocarditis should include serial troponins and electrocardiograms. If myocardial damage is detected in these tests, further screening should be carried out. Cardiac magnetic resonance imagining and endomyocardial biopsy are the most useful tests for myocarditis. Treatment for COVID-19 myocarditis is still controversial; however, the use of intravenous immunoglobulins and corticosteroids in combination may be effective, particularly in cases of fulminant myocarditis. Overall, the incidence of COVID-19 myocarditis requires further research, while the use of intravenous immunoglobulins and corticosteroids in conjunction requires large randomized controlled trials to determine their efficacy.
Từ khóa
Tài liệu tham khảo
Dong E, Du H, Gardner L (2020) An interactive web-based dashboard to track COVID-19 in real time. Lancet Infect Dis 20(5):533–534. https://doi.org/10.1016/S1473-3099(20)30120-1
Cascella M, Rajnik M, Aleem A, Dulebohn SC, di Napoli R (2021)Features, Evaluation, and Treatment of Coronavirus (COVID-19)
WHO Coronavirus (COVID-19) Dashboard. Covid19.who.int. Accessed September 13, 2021. https://covid19.who.int/
Parasher A (2021) COVID-19: current understanding of its pathophysiology, clinical presentation and treatment. Postgrad Med J 97(1147):312. https://doi.org/10.1136/postgradmedj-2020-138577
Li W, Moore MJ, Vasilieva N et al (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426(6965):450–454. https://doi.org/10.1038/nature02145
Belouzard S, Millet JK, Licitra BN, Whittaker GR (2012) Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 4(6):1011–1033. https://doi.org/10.3390/v4061011
Wiersinga WJ, Rhodes A, Cheng AC, Peacock SJ, Prescott HC (2020) Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): a review. JAMA 324(8):782–793. https://doi.org/10.1001/jama.2020.12839
Mele D, Flamigni F, Rapezzi C, Ferrari R (2021) Myocarditis in COVID-19 patients: current problems. Intern Emerg Med 16(5):1123–1129. https://doi.org/10.1007/s11739-021-02635-w
Marcinkiewicz K, Petryka-Mazurkiewicz J, Nowicki M et al (2021) Acute heart failure in the course of fulminant myocarditis requiring mechanical circulatory support in a healthy young patient after coronavirus disease 2019. Kardiologia Polska (Polish Heart J) 79(5):583–584. https://doi.org/10.33963/KP.15888
Inciardi RM, Lupi L, Zaccone G et al (2020) Cardiac involvement in a patient with coronavirus disease 2019 (COVID-19). JAMA Cardiol 5(7):819–824. https://doi.org/10.1001/jamacardio.2020.1096
Pascariello G, Cimino G, Calvi E et al (2020) Cardiogenic shock due to COVID-19-related myocarditis in a 19-year-old autistic patient. J Med Cases 11(7):207–210. https://doi.org/10.14740/jmc3517
Cooper LT Jr (2009) Myocarditis. N Engl J Med 360(15):1526–1538. https://doi.org/10.1056/NEJMra0800028
Baboonian C, Treasure T (1997) Meta-analysis of the association of enteroviruses with human heart disease. Heart (British Cardiac Society) 78(6):539–543. https://doi.org/10.1136/hrt.78.6.539
Caforio ALP, Calabrese F, Angelini A et al (2007) A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur Heart J 28(11):1326–1333. https://doi.org/10.1093/eurheartj/ehm076
Agrawal AS, Garron T, Tao X et al (2015) Generation of a transgenic mouse model of Middle East respiratory syndrome coronavirus infection and disease. J Virol 89(7):3659–3670. https://doi.org/10.1128/JVI.03427-14
Esfandiarei M, McManus BM (2008) Molecular biology and pathogenesis of viral myocarditis. Annu Rev Pathol 3(1):127–155. https://doi.org/10.1146/annurev.pathmechdis.3.121806.151534
Seko Y, Takahashi N, Yagita H, Okumura K, Yazaki Y (1997) Expression of cytokine mRNAs in murine hearts with acute myocarditis caused by coxsackievirus B3. J Pathol 183(1):105–108. https://doi.org/10.1002/(SICI)1096-9896(199709)183:1%3c105::AID-PATH1094%3e3.0.CO;2-E
Cihakova D, Sharma R, Fairweather D, Afanasyeva M, Rose N (2004) Animal models for autoimmune myocarditis and autoimmune thyroiditis. Methods Mol Med 102:175–193. https://doi.org/10.1385/1-59259-805-6:175
Zhang P, Cox CJ, Alvarez KM, Cunningham MW (2009) Cutting edge: cardiac myosin activates innate immune responses through TLRs. J Immunol (Baltimore, Md) 183(1):27–31. https://doi.org/10.4049/jimmunol.0800861
Blyszczuk P, Kania G, Dieterle T et al (2009) Myeloid differentiation factor-88/interleukin-1 signaling controls cardiac fibrosis and heart failure progression in inflammatory dilated cardiomyopathy. Circ Res 105(9):912–920. https://doi.org/10.1161/CIRCRESAHA.109.199802
Baldeviano GC, Barin JG, Talor Mv et al (2010) Interleukin-17A is dispensable for myocarditis but essential for the progression to dilated cardiomyopathy. Circul Res 106(10):1646–1655. https://doi.org/10.1161/CIRCRESAHA.109.213157
Oleszak F, Maryniak A, Botti E et al (2020) Myocarditis associated With COVID-19. Am J Med Case Rep 8(12):498–502. https://doi.org/10.12691/ajmcr-8-12-19
Qian Z, Travanty EA, Oko L et al (2013) Innate immune response of human alveolar type II cells infected with severe acute respiratory syndrome-coronavirus. Am J Respir Cell Mol Biol 48(6):742–748. https://doi.org/10.1165/rcmb.2012-0339OC
Goulter AB, Goddard MJ, Allen JC, Clark KL (2004) ACE2 gene expression is up-regulated in the human failing heart. BMC Med 2:19. https://doi.org/10.1186/1741-7015-2-19
Sharma YP, Agstam S, Yadav A, Gupta A, Gupta A (2021) Cardiovascular manifestations of COVID-19: an evidence-based narrative review. Indian J Med Res 153(1 & 2):7–16. https://doi.org/10.4103/ijmr.IJMR_2450_20
Tavazzi G, Pellegrini C, Maurelli M et al (2020) Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail 22(5):911–915. https://doi.org/10.1002/ejhf.1828
Oudit GY, Kassiri Z, Jiang C et al (2009) SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 39(7):618–625. https://doi.org/10.1111/j.1365-2362.2009.02153.x
Siripanthong B, Nazarian S, Muser D et al (2020) Recognizing COVID-19-related myocarditis: the possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm 17(9):1463–1471. https://doi.org/10.1016/j.hrthm.2020.05.001
Kawakami R, Sakamoto A, Kawai K et al (2021) Pathological evidence for SARS-CoV-2 as a cause of myocarditis: JACC review topic of the week. J Am Coll Cardiol 77(3):314–325. https://doi.org/10.1016/j.jacc.2020.11.031
Fox SE, Li G, Akmatbekov A et al (2020) Unexpected features of cardiac pathology in COVID-19 infection. Circulation 142(11):1123–1125. https://doi.org/10.1161/CIRCULATIONAHA.120.049465
Varga Z, Flammer AJ, Steiger P et al (2020) Endothelial cell infection and endotheliitis in COVID-19. Lancet (London, England) 395(10234):1417–1418. https://doi.org/10.1016/S0140-6736(20)30937-5
Fox SE, Falgout L, vandar Heide RS (2021) COVID-19 myocarditis: quantitative analysis of the inflammatory infiltrate and a proposed mechanism. Cardiovasc Pathol 54:107361. https://doi.org/10.1016/j.carpath.2021.107361
Lee DW, Gardner R, Porter DL et al (2014) Current concepts in the diagnosis and management of cytokine release syndrome. Blood 124(2):188–195. https://doi.org/10.1182/blood-2014-05-552729
Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M (2020) The cytokine storm in COVID-19: an overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 53:25–32. https://doi.org/10.1016/j.cytogfr.2020.05.003
Talasaz AH, Sadeghipour P, Kakavand H et al (2021) Recent randomized trials of antithrombotic therapy for patients with COVID-19: JACC state-of-the-art review. J Am Coll Cardiol 77(15):1903–1921. https://doi.org/10.1016/j.jacc.2021.02.035
Guzik TJ, Mohiddin SA, Dimarco A et al (2020) COVID-19 and the cardiovascular system: implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res 116(10):1666–1687. https://doi.org/10.1093/cvr/cvaa106
Guo T, Fan Y, Chen M et al (2020) Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 5(7):811–818. https://doi.org/10.1001/jamacardio.2020.1017
Li B, Yang J, Zhao F et al (2020) Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clin Res Cardiol 109(5):531–538. https://doi.org/10.1007/s00392-020-01626-9
Halushka MK, vandar Heide RS (2021) Myocarditis is rare in COVID-19 autopsies: cardiovascular findings across 277 postmortem examinations. Cardiovasc Pathol 50:107300. https://doi.org/10.1016/j.carpath.2020.107300
Puntmann VO, Carerj ML, Wieters I et al (2020) Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol 5(11):1265–1273. https://doi.org/10.1001/jamacardio.2020.3557
Shi S, Qin M, Shen B et al (2020) Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol. 5(7):802–810. https://doi.org/10.1001/jamacardio.2020.0950
Ruan Q, Yang K, Wang W, Jiang L, Song J (2020) Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 46(5):846–848. https://doi.org/10.1007/s00134-020-05991-x
Laganà N, Cei M, Evangelista I et al (2021) Suspected myocarditis in patients with COVID-19: a multicenter case series. Medicine 100(8):e24552–e24552. https://doi.org/10.1097/MD.0000000000024552
Omidi F, Hajikhani B, Kazemi SN et al (2021) COVID-19 and cardiomyopathy: a systematic review. Front Cardiovasc Med 8:695206. https://doi.org/10.3389/fcvm.2021.695206
Guo J, Wei X, Li Q et al (2020) Single-cell RNA analysis on ACE2 expression provides insights into SARS-CoV-2 potential entry into the bloodstream and heart injury. J Cell Physiol 235(12):9884–9894. https://doi.org/10.1002/jcp.29802
Ma M, Xu Y, Su Y et al (2021) Single-cell transcriptome analysis decipher new potential regulation mechanism of ACE2 and NPs signaling among heart failure patients infected with SARS-CoV-2. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.628885
Chen L, Li X, Chen M, Feng Y, Xiong C (2020) The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc Res 116(6):1097–1100. https://doi.org/10.1093/cvr/cvaa078
Pan D, Sze S, Minhas JS et al (2020) The impact of ethnicity on clinical outcomes in COVID-19: a systematic review. EClinicalMedicine 23:100404. https://doi.org/10.1016/j.eclinm.2020.100404
Myers VD, Gerhard GS, McNamara DM et al (2018) Association of variants in BAG3 with cardiomyopathy outcomes in African American Individuals. JAMA Cardiol 3(10):929–938. https://doi.org/10.1001/jamacardio.2018.2541
Leigh JA, Alvarez M, Rodriguez CJ (2016) Ethnic minorities and coronary heart disease: an update and future directions. Curr Atheroscler Rep 18(2):9. https://doi.org/10.1007/s11883-016-0559-4
Abuelgasim E, Saw LJ, Shirke M, Zeinah M, Harky A (2020) COVID-19: Unique public health issues facing Black, Asian and minority ethnic communities. Curr Probl Cardiol 45(8):100621. https://doi.org/10.1016/j.cpcardiol.2020.100621
Vinciguerra M, Greco E (2020) Sars-CoV-2 and black population: ACE2 as shield or blade? Infection Genetics Evol J Mol Epidemiol Evolut Genetics Infect Diseases 84:104361. https://doi.org/10.1016/j.meegid.2020.104361
Maron BJ, Udelson JE, Bonow RO et al (2015) Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. Circulation. https://doi.org/10.1161/CIR.0000000000000239
Daniels CJ, Rajpal S, Greenshields JT et al (2021) Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2021.2065
Rajpal S, Tong MS, Borchers J et al (2021) Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. JAMA Cardiol 6(1):116–118. https://doi.org/10.1001/jamacardio.2020.4916
Bozkurt B, Kamat I, Hotez PJ (2021) Myocarditis with COVID-19 mRNA vaccines. Circulation 144(6):471–484. https://doi.org/10.1161/CIRCULATIONAHA.121.056135
Diaz GA, Parsons GT, Gering SK, Meier AR, Hutchinson Iv, Robicsek A (2021) Myocarditis and pericarditis after vaccination for COVID19. JAMA. https://doi.org/10.1001/jama.2021.13443
Abu Mouch S, Roguin A, Hellou E et al (2021) Myocarditis following COVID-19 mRNA vaccination. Vaccine 39(29):3790–3793. https://doi.org/10.1016/j.vaccine.2021.05.087
Kim HW, Jenista ER, Wendell DC et al (2021) Patients with acute myocarditis following mRNA COVID-19 vaccination. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2021.2828
Shaw KE, Cavalcante JL, Han BK, Gössl M (2021) Possible association between COVID-19 vaccine and myocarditis: clinical and CMR findings. JACC Cardiovasc Imaging 14(9):1856–1861. https://doi.org/10.1016/j.jcmg.2021.06.002
Montgomery J, Ryan M, Engler R et al (2021) Myocarditis following immunization with mRNA COVID-19 vaccines in members of the US military. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2021.2833
Dionne A, Sperotto F, Chamberlain S et al (2021) Association of myocarditis with BNT162b2 messenger RNA COVID-19 vaccine in a case series of children. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2021.3471
Bhopal SS, Bagaria J, Olabi B, Bhopal R (2021) Children and young people remain at low risk of COVID-19 mortality. Lancet Child Adolescent Health 5(5):e12–e13. https://doi.org/10.1016/S2352-4642(21)00066-3
D’Angelo T, Cattafi A, Carerj ML et al (2021) Myocarditis after SARS-CoV-2 vaccination: a vaccine-induced reaction? Can J Cardiol. https://doi.org/10.1016/j.cjca.2021.05.010
Al-Akchar M, Kiel J (2021) Acute Myocarditis
Kim IC, Kim JY, Kim HA, Han S (2020) COVID-19-related myocarditis in a 21-year-old female patient. Eur Heart J 41(19):1859. https://doi.org/10.1093/eurheartj/ehaa288
Das BB (2021) SARS-CoV-2 myocarditis in a high school athlete after COVID-19 and its implications for clearance for sports. Children (Basel, Switzerland) 8(6):427. https://doi.org/10.3390/children8060427
Fried JA, Ramasubbu K, Bhatt R et al (2020) The variety of cardiovascular presentations of COVID-19. Circulation 141(23):1930–1936. https://doi.org/10.1161/CIRCULATIONAHA.120.047164
Okor I, Sleem A, Zhang A, Kadakia R, Bob-Manuel T, Krim SR (2021) Suspected COVID-19-induced myopericarditis. Ochsner J 21(2):181–186. https://doi.org/10.31486/toj.20.0090
Ho JS, Sia CH, Chan MY, Lin W, Wong RC (2020) Coronavirus-induced myocarditis: a meta-summary of cases. Heart Lung J Crit Care 49(6):681–685. https://doi.org/10.1016/j.hrtlng.2020.08.013
Gaine S, Devitt P, Coughlan JJ, Pearson I (2021) COVID-19-associated myocarditis presenting as new-onset heart failure and atrial fibrillation. BMJ Case Rep 14(7):e244027. https://doi.org/10.1136/bcr-2021-244027
Kociol RD, Cooper LT, Fang JC et al (2020) Recognition and initial management of fulminant myocarditis. Circulation 141(6):e69–e92. https://doi.org/10.1161/CIR.0000000000000745
Wang Z, Wang Y, Lin H, Wang S, Cai X, Gao D (2019) Early characteristics of fulminant myocarditis vs non-fulminant myocarditis: a meta-analysis. Medicine 98(8):e14697–e14697. https://doi.org/10.1097/MD.0000000000014697
Schultz JC, Hilliard AA, Cooper LT Jr, Rihal CS (2009) Diagnosis and treatment of viral myocarditis. Mayo Clin Proc 84(11):1001–1009. https://doi.org/10.1016/S0025-6196(11)60670-8
Smith SC, Ladenson JH, Mason JW, Jaffe AS (1997) Elevations of cardiac troponin I associated with myocarditis. Experimental and clinical correlates. Circulation 95(1)
Sawalha K, Abozenah M, Kadado AJ et al (2021) Systematic review of COVID-19 related myocarditis: insights on management and outcome. Cardiovasc Revascular Med Include Mol Intervent 23:107–113. https://doi.org/10.1016/j.carrev.2020.08.028
Tschöpe C, Cooper LT, Torre-Amione G, van Linthout S (2019) Management of myocarditis-related cardiomyopathy in adults. Circ Res 124(11):1568–1583. https://doi.org/10.1161/CIRCRESAHA.118.313578
Ferreira VM, Schulz-Menger J, Holmvang G et al (2018) Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol 72(24):3158–3176. https://doi.org/10.1016/j.jacc.2018.09.072
Friedrich MG, Sechtem U, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC White Paper. J Am Coll Cardiol 53(17):1475–1487. https://doi.org/10.1016/j.jacc.2009.02.007
Ho JS, Sia CH, Chan MY, Lin W, Wong RC (2020) Coronavirus-induced myocarditis: a meta-summary of cases. Heart Lung J Critical Care 49(6):681–685. https://doi.org/10.1016/j.hrtlng.2020.08.013
Ferreira MV, Jeanette SM, Godtfred H et al (2018) Cardiovascular magnetic resonance in nonischemic myocardial inflammation. J Am College Cardiol. 72(24):3158–3176. https://doi.org/10.1016/j.jacc.2018.09.072
Leone O, Veinot JP, Angelini A et al (2012) 2011 Consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc Pathol 21(4):245–274. https://doi.org/10.1016/j.carpath.2011.10.001
Aretz HT (1987) Myocarditis: the Dallas criteria. Human Pathol. https://doi.org/10.1016/s0046-8177(87)80363-5
Secco GG, Tarantini G, Mazzarotto P et al (2021) Invasive strategy for COVID patients presenting with acute coronary syndrome: the first multicenter Italian experience. Catheter Cardiovasc Interv 97(2):195–198. https://doi.org/10.1002/ccd.28959
Anthony RM, Nimmerjahn F, Ashline DJ, Reinhold VN, Paulson JC, Ravetch JV (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320(5874):373–376. https://doi.org/10.1126/science.1154315
Maisch B, Hufnagel G, Kölsch S et al (2004) Treatment of inflammatory dilated cardiomyopathy and (peri)myocarditis with immunosuppression and i.v. immunoglobulins. Herz 29(6):624–636. https://doi.org/10.1007/s00059-004-2628-7
Hu H, Ma F, Wei X, Fang Y (2021) Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. Eur Heart J 42(2):206. https://doi.org/10.1093/eurheartj/ehaa190
Huang X, Sun Y, Su G, Li Y, Shuai X (2019) Intravenous immunoglobulin therapy for acute myocarditis in children and adults. Int Heart J 60(2):359–365. https://doi.org/10.1536/ihj.18-299
Tschöpe C, van Linthout SS, Pieske B, Kühl U (2018) Immunosuppression in lymphocytic myocarditis with parvovirus B19 presence. Eur J Heart Failure 20:609
Abdelnabi M, Eshak N, Saleh Y, Almaghraby A (2020) Coronavirus disease 2019 myocarditis: insights into pathophysiology and management. Eur Cardiol Rev. https://doi.org/10.15420/ecr.2020.16
Chen HS, Wang W, Wu SN, Liu JP (2013) Corticosteroids for viral myocarditis. Cochrane Database Syst Rev 2013(10):CD004471–CD004471. https://doi.org/10.1002/14651858.CD004471.pub3
Zhao H, Zhu Q, Zhang C et al (2021) Tocilizumab combined with favipiravir in the treatment of COVID-19: a multicenter trial in a small sample size. Biomed Pharmacother 133:110825. https://doi.org/10.1016/j.biopha.2020.110825