COVID-19 and Parkinson’s Disease: Possible Links in Pathology and Therapeutics

Neurotoxicity Research - Tập 40 - Trang 1586-1596 - 2022
Shubhangini Tiwari1, Neelam Yadav2, Sarika Singh1,3
1Department of Neurosciences and Ageing Biology and Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
2Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
3Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India

Tóm tắt

The outbreak of SARs-CoV-2 with emerging new variants is leading to global health crisis and has brought a major concern for patients with comorbidities. Parkinson’s disease (PD) is a motor neurodegenerative disease involving various metabolic and psychological ailments along with the common occurrence of hyposmia as observed in COVID-19 patients. In addition, the observed surplus inflammatory responses in both diseases are also alarming. Alongside, angiotensin-converting enzyme 2 (ACE2) receptor, essentially required by SARS-CoV-2 to enter the cell and dopamine decarboxylase (DDC), required for dopamine synthesis is known to co-regulate in the non-neuronal cells. Taken together, these conditions suggested the probable reciprocal pathological relation between COVID-19 and PD and also suggested that during comorbidities, the disease diagnosis and therapeutics are critical and may engender severe health complications. In this review, we discuss various events and mechanisms which may have implications for the exacerbation of PD conditions and must be taken into account during the treatment of patients.

Tài liệu tham khảo

Abreu GEA, Aguilar MEH, Covarrubias DH, Durán FR (2020) Amantadine as a drug to mitigate the effects of COVID-19. Med Hypotheses. https://doi.org/10.1016/j.mehy.2020.109755 Ait Wahmane S, Achbani A, Ouhaz Z et al (2020) The possible protective role of α-synuclein against severe acute respiratory syndrome coronavirus 2 infections in patients with Parkinson’s disease. Mov Disord 35:1293–1294. https://doi.org/10.1002/MDS.28185 Alavi Darazam I, Hatami F, Rabiei MM et al (2020) An investigation into the beneficial effects of high-dose interferon beta 1-a, compared to low-dose interferon beta 1-a (the base therapeutic regimen) in moderate to severe COVID-19: a structured summary of a study protocol for a randomized controlled l trial. Trials 21 Anwar F, Naqvi S, Al-Abbasi FA et al (2020) Targeting COVID-19 in Parkinson’s patients: drugs repurposed. Curr Med Chem. https://doi.org/10.2174/0929867327666200903115138 Aranda-Abreu GE, Aranda-Martínez JD, Araújo R (2021) Use of amantadine in a patient with SARS-CoV-2. J Med Virol 93:110–111 Araújo R, Aranda-Martínez JD, Aranda-Abreu GE (2020) Amantadine treatment for people with COVID-19. Arch Med Res 51:739–740. https://doi.org/10.1016/j.arcmed.2020.06.009 Artusi CA, Romagnolo A, Ledda C et al (2021) COVID-19 and Parkinson’s disease: what do we know so far? J Parkinsons Dis 11:445–454 Baba Y, Kuroiwa A, Uitti RJ et al (2005) Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat Disord 11:493–498. https://doi.org/10.1016/J.PARKRELDIS.2005.07.005 Baig AM, Khaleeq A, Syeda H (2020) Docking prediction of amantadine in the receptor binding domain of spike protein of SARS-CoV-2. ACS Pharmacol Transl Sci 3:1430–1433. https://doi.org/10.1021/acsptsci.0c00172 Barcia C (2013) Glial-Mediated Inflammation Underlying Parkinsonism. Scientifica 20131–15. https://doi.org/10.1155/2013/357805 Basova L, Najera JA, Bortell N et al (2018) Dopamine and its receptors play a role in the modulation of CCR5 expression in innate immune cells following exposure to Methamphetamine: Implications to HIV infection. PLoS ONE. https://doi.org/10.1371/journal.pone.0199861 Bohnen NI, Müller MLTM, Kotagal V et al (2010) Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease. Brain 133:1747–1754. https://doi.org/10.1093/brain/awq079 Bondy B (2002) Pathophysiology of depression and mechanisms of treatment. Dialogues Clin Neurosci 4:7–20. https://doi.org/10.31887/DCNS.2002.4.1/BBONDY Braak H, del Tredici K (2009) Prologue. Adv Anat Embryol Cell Biol 201:1–8. https://doi.org/10.1007/978-3-540-79850-7_1 Brown LK (1994) Respiratory dysfunction in Parkinson’s disease. Clin Chest Med 15:715–727 Burn DJ (2002) Beyond the iron mask: towards better recognition and treatment of depression associated with Parkinson’s disease. Mov Disord 17:445–454. https://doi.org/10.1002/MDS.10114 Cardoso SRX, Pereira JS (2002) Analysis of breathing function in Parkinson’s disease. Arq Neuropsiquiatr 60:91–95. https://doi.org/10.1590/S0004-282X2002000100016 Carey RM, Lee RJ (2019) Taste receptors in upper airway innate immunity. Nutrients 11 Cartella SM, Terranova C, Rizzo V et al (2021) COVID-19 and Parkinson’s disease: an overview. J Neurol 268:4415–4421. https://doi.org/10.1007/S00415-021-10721-4 Chalif JI, Sitsapesan HA, Pattinson KTS et al (2014) Dyspnea as a side effect of subthalamic nucleus deep brain stimulation for Parkinson’s disease. Respir Physiol Neurobiol 192:128–133. https://doi.org/10.1016/J.RESP.2013.12.014 Checconi P, de Angelis M, Marcocci ME et al (2020) Redox-modulating agents in the treatment of viral infections. Int J Mol Sci 21:1–21. https://doi.org/10.3390/IJMS21114084 Chen ZF, Shi SM, Hu RX et al (2003) Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Arch Neurol 60:1059–1065. https://doi.org/10.1001/ARCHNEUR.60.8.1059 Cilia R, Bonvegna S, Straccia G et al (2020) Effects of COVID-19 on Parkinson’s disease clinical features: a community-based case-control study. Mov Disord 35:1287–1292. https://doi.org/10.1002/MDS.28170 Cohen ME, Eichel R, Steiner-Birmanns B et al (2020) A case of probable Parkinson’s disease after SARS-CoV-2 infection. Lancet Neurol 19:804–805. https://doi.org/10.1016/S1474-4422(20)30305-7 Cortés-Borra A, Aranda-Abreu GE (2021) Amantadine in the prevention of clinical symptoms caused by SARS-CoV-2. Pharmacol Rep. https://doi.org/10.1007/s43440-021-00231-5 Cossu G, Melis M, Sarchioto M et al (2018) 6-n-propylthiouracil taste disruption and TAS2R38 nontasting form in Parkinson’s disease. Mov Disord 33:1331–1339. https://doi.org/10.1002/mds.27391 Dandekar A, Mendez R, Zhang K (2015) Cross talk between ER stress, oxidative stress, and inflammation in health and disease. Methods Mol Biol 1292:205–214. https://doi.org/10.1007/978-1-4939-2522-3_15 D’Arrigo A, Floro S, Bartesaghi F et al (2020) Respiratory dysfunction in Parkinson’s disease: a narrative review. ERJ Open Research 6:00165–02020. https://doi.org/10.1183/23120541.00165-2020 Doty RL, Hawkes CH (2019) Chemosensory dysfunction in neurodegenerative diseases. In: Handbook of Clinical Neurology. Elsevier B.V., pp 325–360 Egan SJ, Laidlaw K, Starkstein S (2015) Cognitive behaviour therapy for depression and anxiety in Parkinson’s disease. J Parkinsons Dis 5:443–451 Ejlerskov P, Hultberg JG, Wang JY et al (2015) Lack of neuronal IFN-β-IFNAR causes lewy body- and Parkinson’s disease-like dementia. Cell 163:324–339. https://doi.org/10.1016/J.CELL.2015.08.069 Escobales N, Nuñez RE, Javadov S (2019) Mitochondrial angiotensin receptors and cardioprotective pathways. Am J Physiol Heart Circ Physiol 316:H1426–H1438 Espay AJ, Vizcarra JA, Marsili L et al (2019) Revisiting protein aggregation as pathogenic in sporadic Parkinson and Alzheimer diseases. Neurology 92:329–337. https://doi.org/10.1212/WNL.0000000000006926 Estenne M, Hubert M, de Troyer A (1984) Respiratory-muscle involvement in Parkinson’s disease. N Engl J Med 311:1516–1517. https://doi.org/10.1056/NEJM198412063112314 Fasano A, Antonini A, Katzenschlager R et al (2020) Management of advanced therapies in Parkinson’s disease patients in times of humanitarian crisis: the COVID-19 experience. Mov Disord Clin Pract 7:361–372. https://doi.org/10.1002/MDC3.12965 Fazzini E, Fleming J, Fahn S (1992) Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson’s disease. Mov Disord 7:153–158. https://doi.org/10.1002/MDS.870070210 Filograna R, Beltramini M, Bubacco L, Bisaglia M (2016) Anti-oxidants in Parkinson’s disease therapy: a critical point of view. Curr Neuropharmacol 14:260–271. https://doi.org/10.2174/1570159X13666151030102718 Fink K, Nitsche A, Neumann M et al (2021) Amantadine inhibits SARS-CoV-2 in vitro. Viruses. https://doi.org/10.3390/v13040539 Finkel Y, Mizrahi O, Nachshon A, Weingarten-Gabbay S, Morgenstern D, Yahalom-Ronen Y, Tamir H, Achdout H, Stein D, Israeli O, Beth-Din A, Sharon, Melamed S, Weiss S, Israely T, Paran N, Schwartz M, Stern-Ginossar N (2021) The coding capacity of SARS-CoV-2. Nature 589(7840):125–130. https://doi.org/10.1038/s41586-020-2739-1 Fishman PS, Gass JS, Swoveland PT et al (1985) Infection of the basal ganglia by a murine coronavirus. Science 229:877–879. https://doi.org/10.1126/SCIENCE.2992088 Follmer C (2020) Viral infection-induced gut dysbiosis, neuroinflammation, and α-synuclein aggregation: updates and perspectives on COVID-19 and neurodegenerative disorders. ACS Chem Neurosci 11:4012–4016. https://doi.org/10.1021/ACSCHEMNEURO.0C00671 Frediansyah A, Tiwari R, Sharun K et al (2021) Antivirals for COVID-19: a critical review. Clin Epidemiol Glob Health 9:90–98. https://doi.org/10.1016/J.CEGH.2020.07.006 Fyfe I (2020) Aspirin and ibuprofen could lower risk of LRRK2 Parkinson disease. Nat Rev Neurol 16:460. https://doi.org/10.1038/S41582-020-0394-7 Gaskill PJ, Yano HH, Kalpana GV et al (2014) Dopamine receptor activation increases HIV entry into primary human macrophages. PLoS ONE. https://doi.org/10.1371/journal.pone.0108232 Goswami P, Gupta S, Biswas J et al (2016) Endoplasmic reticulum stress instigates the rotenone induced oxidative apoptotic neuronal death: a study in rat brain. Mol Neurobiol 53:5384–5400. https://doi.org/10.1007/s12035-015-9463-0 Grieb P, Świątkiewicz M, Prus K, Rejdak K (2021) Amantadine for COVID-19. J Clin Pharmacol 61:412–413 Guilherme EM, Moreira RDFC, de Oliveira A et al (2021) Respiratory disorders in Parkinson’s disease. J Parkinsons Dis. https://doi.org/10.3233/jpd-212565 Gundersen V (2010) Protein aggregation in Parkinson’s disease. Acta Neurol Scand 122:82–87 Guo Q, Zheng Y, Shi J et al (2020) Immediate psychological distress in quarantined patients with COVID-19 and its association with peripheral inflammation: a mixed-method study. Brain Behav Immun 88:17–27. https://doi.org/10.1016/j.bbi.2020.05.038 Haehner A, Boesveldt S, Berendse HW et al (2009) Prevalence of smell loss in Parkinson’s disease - a multicenter study. Parkinsonism Relat Disord 15:490–494. https://doi.org/10.1016/j.parkreldis.2008.12.005 Haehner A, Hummel T, Reichmann H (2014) A clinical approach towards smell loss in Parkinson’s disease. J Parkinsons Dis 4:189–195 Hawkes CH, del Tredici K, Braak H (2007) Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 33:599–614 Hirsch EC, Hunot S, Damier P, Faucheux B (1998) Glial cells and inflammation in parkinson's disease: A role in neurodegeneration?. Ann Neurol 44(S1):S115–S120. https://doi.org/10.1002/ana.410440717 Hirsch EC, Standaert DG (2021) Ten unsolved questions about neuroinflammation in Parkinson’s disease. Mov Disord 36:16–24. https://doi.org/10.1002/MDS.28075 Hubsher G, Haider M, Okun MS (2012) Amantadine: the journey from fighting flu to treating Parkinson disease. Neurology 78:1096–1099 Idrees D, Kumar V (2021) SARS-CoV-2 spike protein interactions with amyloidogenic proteins: potential clues to neurodegeneration. Biochem Biophys Res Commun 554:94–98. https://doi.org/10.1016/j.bbrc.2021.03.100 Islam N, Rahman S (2021) Novel pulmonary delivery of antiviral drugs for treating covid-19 in patients with Parkinson’s disease. Curr Drug Deliv. https://doi.org/10.2174/1567201818666210331121803 Izco M, Blesa J, Verona G et al (2020) Glial activation precedes alpha-synuclein pathology in a mouse model of Parkinson’s disease. Neurosci Res. https://doi.org/10.1016/j.neures.2020.11.004 Jenner P, Olanow CW (1996) Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 47 Jiang T, Sun Q, Chen S (2016) Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog Neurobiol 147:1–19. https://doi.org/10.1016/J.PNEUROBIO.2016.07.005 Jo T, Yasunaga H, Michihata N et al (2018) Influence of Parkinsonism on outcomes of elderly pneumonia patients. Parkinsonism Relat Disord 54:25–29. https://doi.org/10.1016/J.PARKRELDIS.2018.03.028 Kanberg N, Ashton NJ, Andersson LM et al (2020) Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology 95:e1754–e1759. https://doi.org/10.1212/WNL.0000000000010111 Kannarkat GT, Boss JM, Tansey MG (2013) The role of innate and adaptive immunity in Parkinson’s disease. J Parkinsons Dis 3:493–514. https://doi.org/10.3233/JPD-130250 Kesarwani P, Murali AK, Al-Khami AA, Mehrotra S (2013) Redox regulation of T-cell function: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 18:1497–1534. https://doi.org/10.1089/ARS.2011.4073 Khalefah MM, Khalifah AM (2020) Determining the relationship between SARS-CoV-2 infection, dopamine, and COVID-19 complications. J Taibah Univ Med Sci 15:550–553. https://doi.org/10.1016/j.jtumed.2020.10.006 Labandeira-García JL, Garrido-Gil P, Rodriguez-Pallares J et al (2014) Brain renin-angiotensin system and dopaminergic cell vulnerability. Front Neuroanat. https://doi.org/10.3389/fnana.2014.00067 Labandeira-Garcia JL, Valenzuela R, Costa-Besada MA et al (2021) The intracellular renin-angiotensin system: friend or foe. Some light from the dopaminergic neurons. Prog Neurobiol 199 Landreau F, Galeano P, Caltana LR et al (2012) Effects of two commonly found strains of influenza a virus on developing dopaminergic neurons, in relation to the pathophysiology of schizophrenia. PLoS ONE. https://doi.org/10.1371/journal.pone.0051068 Lang AE, Lozano AM (1998) Parkinson’s disease. First of two parts. N Engl J Med 339:1044–1053. https://doi.org/10.1056/NEJM199810083391506 Lee MA, Prentice WM, Hildreth AJ, Walker RW (2007) Measuring symptom load in Idiopathic Parkinson’s disease. Parkinsonism Relat Disord 13:284–289. https://doi.org/10.1016/J.PARKRELDIS.2006.11.009 Li Q, Haney MS (2020) The role of glia in protein aggregation. Neurobiol Dis 143 Liu SY, Sanchez DJ, Aliyari R et al (2012) Systematic identification of type I and type II interferon-induced antiviral factors. Proc Natl Acad Sci U S A 109:4239–4244. https://doi.org/10.1073/PNAS.1114981109 MacIntosh DJ (1977) Respiratory dysfunction in Parkinson’s disease. Prim Care 4:441–445 Mazza MG, de Lorenzo R, Conte C et al (2020) Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav Immun 89:594–600. https://doi.org/10.1016/j.bbi.2020.07.037 McNaught KSP, Olanow CW (2006) Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol Aging 27:530–545 Mehta SH, Pahwa R, Tanner CM et al (2021) Effects of Gocovri (amantadine) extended release capsules on non-motor symptoms in patients with Parkinson’s disease and dyskinesia. Neurol Ther. https://doi.org/10.1007/s40120-021-00246-3 Melenotte C, Silvin A, Goubet AG et al (2020) Immune responses during COVID-19 infection. Oncoimmunology. https://doi.org/10.1080/2162402X.2020.1807836 Merello M, Bhatia KP, Obeso JA (2021) SARS-CoV-2 and the risk of Parkinson’s disease: facts and fantasy. Lancet Neurol 20:94–95. https://doi.org/10.1016/S1474-4422(20)30442-7 Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R (2018) Influence of inflammation in the process of T lymphocyte differentiation: proliferative, metabolic, and oxidative changes. Front Immunol. https://doi.org/10.3389/FIMMU.2018.00339 Musgrove RE, Helwig M, Bae EJ et al (2019) Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. J Clin Investig 129:3738–3753. https://doi.org/10.1172/JCI127330 Nataf S (2020) An alteration of the dopamine synthetic pathway is possibly involved in the pathophysiology of COVID-19. J Med Virol 92:1743–1744 Nicolini H (2020) Depression and anxiety during COVID-19 pandemic. Cir Cir (English Edition) 88:542–547 Padda I, Khehra N, Jaferi U, Parmar MS (2020) The neurological complexities and prognosis of COVID-19. SN Compr Clin Med 2:2025–2036. https://doi.org/10.1007/S42399-020-00527-2/FIGURES/4 Pairo-Castineira E, Clohisey S, Klaric L et al (2021) Genetic mechanisms of critical illness in COVID-19. Nature 591:92–98. https://doi.org/10.1038/S41586-020-03065-Y Pennington S, Snell K, Lee M, Walker R (2010) The cause of death in idiopathic Parkinson’s disease. Parkinsonism Relat Disord 16:434–437. https://doi.org/10.1016/J.PARKRELDIS.2010.04.010 Pérez-Cano HJ, Moreno-Murguía MB, Morales-López O et al (2020) Anxiety, depression, and stress in response to the coronavirus disease-19 pandemic. Cir Cir (English Edition) 88:562–568. https://doi.org/10.24875/CIRU.20000561 Plusa T (2021) Przeciwzapalne działanie amantadyny i memantyny w zakażeniu SARS-CoV-2. Pol Merkur Lekarski 49:67–70 Polatli M, Akyol A, Çilda O, Bayülkem K (2001) Pulmonary function tests in Parkinson’s disease. Eur J Neurol 8:341–345. https://doi.org/10.1046/J.1468-1331.2001.00253.X Rethinavel HS, Ravichandran S, Radhakrishnan RK, Kandasamy M (2021) COVID-19 and Parkinson’s disease: Defects in neurogenesis as the potential cause of olfactory system impairments and anosmia. J Chem Neuroanat 115:101965. https://doi.org/10.1016/j.jchemneu.2021.101965 Rfaki A, Touil N, Hemlali M et al (2021) Complete genome sequence of a SARS-CoV-2 strain sampled in Morocco in May 2020, obtained using sanger sequencing. Microbiol Resour Announc. https://doi.org/10.1128/MRA.00387-21 Rhea EM, Logsdon AF, Hansen KM et al (2021) The S1 protein of SARS-CoV-2 crosses the blood-brain barrier in mice. Nat Neurosci 24:368–378. https://doi.org/10.1038/S41593-020-00771-8 Rice JE, Antic R, Thompson PD (2002) Disordered respiration as a levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord 17:524–527. https://doi.org/10.1002/mds.10072 Schonhoff AM, Williams GP, Wallen ZD et al (2020) Innate and adaptive immune responses in Parkinson’s disease. Prog Brain Res 252:169–216. https://doi.org/10.1016/BS.PBR.2019.10.006 Schrag A, Taddei RN (2017) Depression and anxiety in Parkinson’s disease. In: International Review of Neurobiology. Academic Press Inc., pp 623–655 Semerdzhiev SA, Fakhree MAA, Segers-Nolten I et al (2021) Interactions between SARS-CoV-2 N-protein and α-synuclein accelerate amyloid formation. bioRxiv. https://doi.org/10.1101/2021.04.12.439549 Serebrovskaya T, Karaban I, Mankovskaya I et al (1998) Hypoxic ventilatory responses and gas exchange in patients with Parkinson’s disease. Respiration 65:28–33. https://doi.org/10.1159/000029224 Shader RI (2020) COVID-19 and depression. Clin Ther 42:962–963. https://doi.org/10.1016/j.clinthera.2020.04.010 Shaskan EG, Oreland L, Wadell G (1984) Dopamine receptors and monoamine oxidase as virion receptors. Perspect Biol Med 27:239–250. https://doi.org/10.1353/pbm.1984.0032 Shill H, Stacy M (2002) Respiratory complications of Parkinson’s disease. Semin Respir Crit Care Med 23:261–265. https://doi.org/10.1055/S-2002-33034 Shults CW (2005) Antioxidants as therapy for Parkinson’s disease. Antioxid Redox Signal 7:694–700. https://doi.org/10.1089/ARS.2005.7.694 Simanjuntak Y, Liang JJ, Lee YL, Lin YL (2017) Japanese encephalitis virus exploits dopamine D2 receptor-phospholipase C to target dopaminergic human neuronal cells. Front Microbiol. https://doi.org/10.3389/fmicb.2017.00651 Singh S, Joshi N (2017) Astrocytes: inexplicable cells in neurodegeneration. Int J Neurosci 127:204–209 Smieszek SP, Przychodzen BP, Polymeropoulos MH (2020) Amantadine disrupts lysosomal gene expression: a hypothesis for COVID19 treatment. Int J Antimicrob Agents. https://doi.org/10.1016/j.ijantimicag.2020.106004 Smith JL, Stein DA, Shum D et al (2014) Inhibition of dengue virus replication by a class of small-molecule compounds that antagonize dopamine receptor D4 and downstream mitogen-activated protein kinase signaling. J Virol 88:5533–5542. https://doi.org/10.1128/jvi.00365-14 Song E, Zhang C, Israelow B et al (2021) Neuroinvasion of SARS-CoV-2 in human and mouse brain. J Exp Med. https://doi.org/10.1084/JEM.20202135 Spuntarelli V, Luciani M, Bentivegna E et al (2020) COVID-19: is it just a lung disease? A case-based review. SN Compr Clin Med 2:1401–1406. https://doi.org/10.1007/S42399-020-00418-6 Stolzenberg E, Berry D, Yang D et al (2017) A role for neuronal alpha-synuclein in gastrointestinal immunity. J Innate Immun 9:456–463. https://doi.org/10.1159/000477990 Tansey MG, Goldberg MS (2010) Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 37:510–518. https://doi.org/10.1016/J.NBD.2009.11.004 Tavassoly O, Safavi F, Tavassoly I (2020) Seeding brain protein aggregation by SARS-CoV-2 as a possible long-term complication of COVID-19 infection. ACS Chem Neurosci 11:3704–3706 Torsney KM, Forsyth D (2017) Respiratory dysfunction in Parkinson’s disease. J R Coll Physicians Edinb 47:35–39. https://doi.org/10.4997/JrcPe.2017.108 Troisi J, Venutolo G, Tanyà MP et al (2021) COVID-19 and the gastrointestinal tract: source of infection or merely a target of the inflammatory process following SARS-CoV-2 infection? World J Gastroenterol 27:1406–1418 Ulusoy A, Rusconi R, Pérez-Revuelta BI et al (2013) Caudo-rostral brain spreading of α-synuclein through vagal connections. EMBO Mol Med 5:1119–1127. https://doi.org/10.1002/emmm.201302475 Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2 WHO Solidarity Trial Consortium, Pan H, Peto R, Henao-Restrepo AM, Preziosi MP,Sathiyamoorthy V, Abdool Karim Q, Alejandria MM, Hernández García C, Kieny MP,Malekzadeh R, Murthy S, Reddy KS, Roses Periago M, Abi Hanna P, Ader F, Al-Bader AM,Alhasawi A, Allum E, Alotaibi A, Alvarez-Moreno CA, Appadoo S, Asiri A, Aukrust P, Barratt-Due A, Bellani S, Branca M, Cappel-Porter HBC, Cerrato N, Chow TS, Como N, Eustace J,García PJ, Godbole S, Gotuzzo E, Griskevicius L, Hamra R, Hassan M, Hassany M, Hutton D,Irmansyah I, Jancoriene L, Kirwan J, Kumar S, Lennon P, Lopardo G, Lydon P, Magrini N,Maguire T, Manevska S, Manuel O, McGinty S, Medina MT, Mesa Rubio ML, Miranda-MontoyaMC, Nel J, Nunes EP, Perola M, Portolés A, Rasmin MR, Raza A, Rees H, Reges PPS, RogersCA, Salami K, Salvadori MI, Sinani N, Sterne JAC, Stevanovikj M, Tacconelli E, Tikkinen KAO,Trelle S, Zaid H, Røttingen JA, Swaminathan S. (2021) Repurposed Antiviral Drugs for Covid-19 — Interim WHO Solidarity Trial Results. N Engl J Med 384(6):497–511. https://doi.org/10.1056/NEJMoa2023184. Epub 2020 Dec 2. PMID: 33264556; PMCID: PMC7727327 Yang DM, Lin FC, Tsai PH et al (2021a) Pandemic analysis of infection and death correlated with genomic open reading frame 10 mutation in severe acute respiratory syndrome coronavirus 2 victims. J Chin Med Assoc 84:478–484. https://doi.org/10.1097/JCMA.0000000000000542 Yang Y, Huang W, Fan Y, Chen GQ (2021b) Gastrointestinal microenvironment and the gut-lung axis in the immune responses of severe COVID-19. Front Mol Biosci 8 Yu C, Kang L, Chen J, Zang N (2020) Evaluation of safety, efficacy, tolerability, and treatment-related outcomes of type I interferons for human coronaviruses (HCoVs) infection in clinical practice: an updated critical systematic review and meta-analysis. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2020.106740 Zhang L, Zhou L, Bao L et al (2021) SARS-CoV-2 crosses the blood-brain barrier accompanied with basement membrane disruption without tight junctions alteration. Signal Transduct Target Ther. https://doi.org/10.1038/S41392-021-00719-9 Zhou L, Miranda-Saksena M, Saksena NK (2013) Viruses and neurodegeneration. Virol J 10