COMT Val158Met polymorphism, cognitive stability and cognitive flexibility: an experimental examination

Behavioral and Brain Functions - Tập 6 Số 1 - 2010
Elise C. Rosa1, Dwight Dickinson1, José Apud1, Daniel R. Weinberger1, Brita Elvevåg1
1Clinical Brain Disorders Branch, National Institute of Mental Heath/National Institutes of Health, Bethesda, USA

Tóm tắt

Abstract Background Dopamine in prefrontal cortex (PFC) modulates core cognitive processes, notably working memory and executive control. Dopamine regulating genes and polymorphisms affecting PFC - including Catechol-O-Methyltransferase (COMT) Val158Met - are crucial to understanding the molecular genetics of cognitive function and dysfunction. A mechanistic account of the COMT Val158Met effect associates the Met allele with increased tonic dopamine transmission underlying maintenance of relevant information, and the Val allele with increased phasic dopamine transmission underlying the flexibility of updating new information. Thus, consistent with some earlier work, we predicted that Val carriers would display poorer performance when the maintenance component was taxed, while Met carriers would be less efficient when rapid updating was required. Methods Using a Stroop task that manipulated level of required cognitive stability and flexibility, we examined reaction time performance of patients with schizophrenia (n = 67) and healthy controls (n = 186) genotyped for the Val/Met variation. Results In both groups we found a Met advantage for tasks requiring cognitive stability, but no COMT effect when a moderate level of cognitive flexibility was required, or when a conflict cost measure was calculated. Conclusions Our results do not support a simple stability/flexibility model of dopamine COMT Val/Met effects and suggest a somewhat different conceptualization and experimental operationalization of these cognitive components.

Từ khóa


Tài liệu tham khảo

Levy R, Goldman-Rakic PS: Segregation of Working Memory Functions Within the Dorsolateral Prefrontal Cortex. Exp Brain Res. 2000, 133: 23-32. 10.1007/s002210000397.

Seamans JK, Yang CR: The Principal Features and Mechanisms of Dopamine Modulation in the Prefrontal Cortex. Prog Neurobiol. 2004, 74: 1-58. 10.1016/j.pneurobio.2004.05.006.

Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S: Functional Analysis of Genetic Variation in Catechol-O-Methyltransferase (COMT): Effects on mRNA, Protein, and Enzyme Activity in Postmortem Human Brain. Am J Hum Genet. 2004, 75: 807-821. 10.1086/425589.

Papaleo F, Crawley JN, Song J, Lipska BK, Pickel J, Weinberger DR: Genetic Dissection of the Role of Catechol-O-Methyltransferase in Cognition and Stress Reactivity in Mice. J Neurosci. 2008, 28: 8709-8723. 10.1523/JNEUROSCI.2077-08.2008.

Egan MF, Goldberg TE, Kolachana BS, Callicott JH, Mazzanti CM, Straub RE: Effect of COMT Val108/158Met Genotype on Frontal Lobe Function and Risk for Schizophrenia. PNAS. 2001, 98: 6917-6922. 10.1073/pnas.111134598.

Diaz-Asper CM, Goldberg TE, Kolachana BS, Straub RE, Egan MF, Weinberger DR: Genetic Variation in Catechol-O-Methyltransferase: Effects on Working Memory in Schizophrenic Patients, Their Siblings, and Healthy Controls. Biol Psychiatry. 2008, 63: 72-79. 10.1016/j.biopsych.2007.03.031.

Bishop SJ, Fossella J, Croucher CJ, Duncan J: COMT Val158Met Genotype Affects Recruitment of Neural Mechanisms Supporting Fluid Intelligence. Cereb Cortex. 2008, 240: 1-9.

Blasi G, Mattay VS, Bertolino A, Elvevåg B, Callicott JH, Das S: Effect of Catechol-O-Methyltransferase val 158 met Genotype on Attentional Control. J Neurosci. 2005, 25: 5038-5045. 10.1523/JNEUROSCI.0476-05.2005.

Winterer G, Musso F, Vucurevic G, Stoeter P, Konrad A, Seker B: COMT Genotype Predicts BOLD Signal and Noise Characteristics in Prefrontal Circuits. Neuroimage. 2006, 32: 1722-1732. 10.1016/j.neuroimage.2006.05.058.

Barnett JH, Scoriels L, Munafò MR: Meta-Analysis of the Cognitive Effects of Catechol-O-Methyltransferase Gene Val158/108Met Polymorphism. Biol Psychiatry. 2008, 64: 137-44. 10.1016/j.biopsych.2008.01.005.

Burdick KE, Gunawardane N, Woodberry K, Malhotra A: The role of general intelligence as an intermediate phenotype for neuropsychiatric disorders. Cogn Neuropsychiatry. 2009, 14: 299-311. 10.1080/13546800902805347.

Grace AA: Phasic Versus Tonic Dopamine Release and the Modulation of Dopamine System Responsivity: a Hypothesis for the Etiology of Schizophrenia. Neuroscience. 1991, 41: 1-24. 10.1016/0306-4522(91)90196-U.

Bilder RM, Volavka J, Lachman HM, Grace AA: The Catechol-O-Methyltransferase Polymorphism: Relations to the Tonic-Phasic Dopamine Hypothesis and Neuropsychiatric Phenotypes. Neuropsychopharmacology. 2004, 29: 1943-61. 10.1038/sj.npp.1300542.

Nolan KA, Bilder RM, Lachman HM, Volavka J: Catechol O-Methyltransferase Val158Met Polymorphism in Schizophrenia: Differential Effects of Val and Met Alleles on Cognitive Stability and Flexibility. Am J Psychiatry. 2004, 161: 359-361. 10.1176/appi.ajp.161.2.359.

Opgen-Rhein C, Neuhaus AH, Urbanek C, Hahn E, Sander T, Dettling M: Executive Attention in Schizophrenic Males and the Impact of COMT Val108/158Met Genotype on Performance on the Attention Network Test. Schizophr Bull. 2008, 34: 1231-1239. 10.1093/schbul/sbm155.

Goldberg TE, Egan MF, Gscheidle T, Coppola R, Weickert T, Kolachana BS: Executive Subprocesses in Working Memory: Relationship to Catechol-O-Methyltransferase Val168Met Genotype and Schizophrenia. Arch Gen Psychiatry. 2003, 60: 889-96. 10.1001/archpsyc.60.9.889.

Tan H, Chen Q, Goldberg TE, Mattay VS, Meyer-Lindenberg A, Weinberger DR: Catechol-O-Methyltransferase Val158Met Modulation of Prefrontal-Parietal-Straital Brain Systems During Arithmetic and Temporal Transformations in Working Memory. J Neurosci. 2007, 27: 13393-401. 10.1523/JNEUROSCI.4041-07.2007.

Diamond D, Briand L, Fossella J, Gehlback L: Genetic and Neurochemical Modulation of Prefrontal Cognitive Functions in Children. Am J Psychiatry. 2004, 161: 125-132. 10.1176/appi.ajp.161.1.125.

Raz N, Rodrigue KM, Kennedy KM, Land S: Genetic and Vascular Modifiers of Age-Sensitive Cognitive Skills: Effects of COMT, BDNF, ApoE, and Hypertension. Neuropsychology. 2009, 23: 105-116. 10.1037/a0013487.

Reuter M, Peters K, Schroeter K, Koebke W, Lenardon D, Bloch B: The Influence of the Dopaminergic System on Cognitive Functioning: A Molecular Genetic Approach. Behavl Brain Res. 2005, 164: 93-99. 10.1016/j.bbr.2005.06.002.

Cohen J: The Effect Size Index:f. Statistical Power Analysis for the Behavioral Sciences. 1988, Hillsdale: Lawrence Erlbaum Associates, Inc, 284-288. 2

Dickinson D, Goldberg TE, Gold JM, Egan MF, Elvevåg B, Weinberger DR: Cognitive Factor structure and invariance in people with schizophrenia, their unaffected siblings, and controls. Schizophr Bull.

Bilder RM, Volavka J, Czobar P, Malhotra AK, Kennedy JL, Ni X: Neurocognitive Correlates of the COMT Val158Met Polymorphism in Chronic Schizophrenia. Biol Psychiatry. 2002, 52: 701-707. 10.1016/S0006-3223(02)01416-6.