COMBINATORIAL APPROACHES FOR INVERSE METABOLIC ENGINEERING APPLICATIONS
Tài liệu tham khảo
Bailey, 1990, Strategies and challenges in metabolic engineering, Ann N Y Acad Sci, 589, 1, 10.1111/j.1749-6632.1990.tb24230.x
Papoutsakis, 1984, Equations and calculations for fermentations of butyric acid bacteria, Biotechnol Bioeng, 26, 174, 10.1002/bit.260260210
Varma, 1994, Metabolic Flux Balancing – Basic Concepts, Scientific and Practical Use, Bio-Technology, 12, 994, 10.1038/nbt1094-994
Jackel, 2008, Protein design by directed evolution, Annu Rev Biophys, 37, 153, 10.1146/annurev.biophys.37.032807.125832
Dougherty, 2009, Directed evolution: new parts and optimized function, Curr Opin Biotechnol, 20, 486, 10.1016/j.copbio.2009.08.005
Ideker, 2001, A new approach to decoding life: Systems biology, Annu Rev Genomics Hum Genet, 2, 343, 10.1146/annurev.genom.2.1.343
Andrianantoandro, 2006, Synthetic biology: new engineering rules for an emerging discipline, Mol Syst Biol, 2, 10.1038/msb4100073
Gibson, 2010, Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome, Science, 329, 52, 10.1126/science.1190719
Park, 2008, Towards systems metabolic engineering of microorganisms for amino acid production, Curr Opin Biotechnol, 19, 454, 10.1016/j.copbio.2008.08.007
Planson, 2011, Engineering antibiotic production and overcoming bacterial resistance, Biotechnol J, 6, 812, 10.1002/biot.201100085
Hawkins, 2008, Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae, Nat Chem Biol, 4, 564, 10.1038/nchembio.105
Ro, 2006, Production of the antimalarial drug precursor artemisinic acid in engineered yeast, Nature, 440, 940, 10.1038/nature04640
Khosla, 1997, Harnessing the biosynthetic potential of modular polyketide synthases, Chem Rev, 97, 2577, 10.1021/cr960027u
Atsumi, 2008, Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels, Nature, 451, 86, 10.1038/nature06450
Peralta-Yahya, 2012, Microbial engineering for the production of advanced biofuels, Nature, 488, 320, 10.1038/nature11478
Aldor, 2003, Process design for microbial plastic factories: metabolic engineering of polyhydroxyalkanoates, Curr Opin Biotechnol, 14, 475, 10.1016/j.copbio.2003.09.002
Bailey, 1996, Inverse metabolic engineering: A strategy for directed genetic engineering of useful phenotypes, Biotechnol Bioeng, 52, 109, 10.1002/(SICI)1097-0290(19961005)52:1<109::AID-BIT11>3.0.CO;2-J
Yomano, 1998, Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production, J Ind Microbiol Biotechnol, 20, 132, 10.1038/sj.jim.2900496
Atsumi, 2010, Evolution, genomic analysis, and reconstruction of isobutanol tolerance in Escherichia coli, Mol Syst Biol, 6, 449, 10.1038/msb.2010.98
Blount, 2008, Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli, Proc Natl Acad Sci U S A, 105, 7899, 10.1073/pnas.0803151105
Utrilla, 2012, Engineering and adaptive evolution of Escherichia coli for d-lactate fermentation reveals GatC as a xylose transporter, Metab Eng, 14, 469, 10.1016/j.ymben.2012.07.007
Miroux, 1996, Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels, J Mol Biol, 260, 289, 10.1006/jmbi.1996.0399
Du, 2007, Novel redox potential-based screening strategy for rapid isolation of Klebsiella pneumoniae mutants with enhanced 1,3-propanediol-producing capability, Appl Environ Microbiol, 73, 4515, 10.1128/AEM.02857-06
Hong, 2011, Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis, Proc Natl Acad Sci U S A, 108, 12179, 10.1073/pnas.1103219108
Scalcinati, 2012, Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption, FEMS Yeast Res, 12, 582, 10.1111/j.1567-1364.2012.00808.x
Bro, 2004, Impact of ‘ome’ analyses on inverse metabolic engineering, Metab Eng, 6, 204, 10.1016/j.ymben.2003.11.005
Smith, 2011, An evolutionary strategy for isobutanol production strain development in Escherichia coli, Metab Eng, 13, 674, 10.1016/j.ymben.2011.08.004
Makino, 2011, Comprehensive engineering of Escherichia coli for enhanced expression of IgG antibodies, Metab Eng, 13, 241, 10.1016/j.ymben.2010.11.002
Massey-Gendel, 2009, Genetic selection system for improving recombinant membrane protein expression in E. coli, Protein Sci, 18, 372, 10.1002/pro.39
Badarinarayana, 2001, Selection analyses of insertional mutants using subgenic-resolution arrays, Nat Biotechnol, 19, 1060, 10.1038/nbt1101-1060
Alper, 2005, Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets, Nat Biotechnol, 23, 612, 10.1038/nbt1083
Skretas, 2009, Genetic analysis of G protein-coupled receptor expression in Escherichia coli: inhibitory role of DnaJ on the membrane integration of the human central cannabinoid receptor, Biotechnol Bioeng, 102, 357, 10.1002/bit.22097
Tannler, 2008, Screening of Bacillus subtilis transposon mutants with altered riboflavin production, Metab Eng, 10, 216, 10.1016/j.ymben.2008.06.002
Tyo, 2009, Identification of gene disruptions for increased poly-3-hydroxybutyrate accumulation in Synechocystis PCC 6803, Biotechnol Prog, 25, 1236, 10.1002/btpr.228
Baba, 2006, Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Mol Syst Biol, 2, 10.1038/msb4100050
Winzeler, 1999, Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis, Science, 285, 901, 10.1126/science.285.5429.901
Ozaydin, 2012, Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production, Metab Eng
Lee, 2011, Improved galactose fermentation of Saccharomyces cerevisiae through inverse metabolic engineering, Biotechnol Bioeng, 108, 621, 10.1002/bit.22988
Jin, 2005, Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach, Appl Environ Microbiol, 71, 8249, 10.1128/AEM.71.12.8249-8256.2005
Hong, 2010, Identification of gene targets eliciting improved alcohol tolerance in Saccharomyces cerevisiae through inverse metabolic engineering, J Biotechnol, 149, 52, 10.1016/j.jbiotec.2010.06.006
Reyes, 2011, Genomic library screens for genes involved in n-butanol tolerance in Escherichia coli, PLoS One, 6, e17678, 10.1371/journal.pone.0017678
Sandoval, 2011, Elucidating acetate tolerance in E. coli using a genome-wide approach, Metab Eng, 13, 214, 10.1016/j.ymben.2010.12.001
Jin, 2007, Multi-dimensional gene target search for improving lycopene biosynthesis in Escherichia coli, Metab Eng, 9, 337, 10.1016/j.ymben.2007.03.003
Skretas, 2012, Multi-copy genes that enhance the yield of mammalian G protein-coupled receptors in Escherichia coli, Metab Eng, 14, 591, 10.1016/j.ymben.2012.05.001
Borden, 2010, A genomic-library based discovery of a novel, possibly synthetic, acid-tolerance mechanism in Clostridium acetobutylicum involving non-coding RNAs and ribosomal RNA processing, Metab Eng, 12, 268, 10.1016/j.ymben.2009.12.004
Kitagawa, 2005, Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive): unique resources for biological research, DNA Res, 12, 291, 10.1093/dnares/dsi012
Hu, 2007, Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae, Genome Res, 17, 536, 10.1101/gr.6037607
Soo, 2011, Artificial gene amplification reveals an abundance of promiscuous resistance determinants in Escherichia coli, Proc Natl Acad Sci U S A, 108, 1484, 10.1073/pnas.1012108108
Skretas, 2010, Simple genetic selection protocol for isolation of overexpressed genes that enhance accumulation of membrane-integrated human G protein-coupled receptors in Escherichia coli, Appl Environ Microbiol, 76, 5852, 10.1128/AEM.00963-10
Chauhan, 2009, Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library, FEMS Microbiol Ecol, 67, 130, 10.1111/j.1574-6941.2008.00613.x
Nicolaou, 2011, Coexisting/Coexpressing Genomic Libraries (CoGeL) identify interactions among distantly located genetic loci for developing complex microbial phenotypes, Nucleic Acids Res, 39, e152, 10.1093/nar/gkr817
Santos, 2008, Combinatorial engineering of microbes for optimizing cellular phenotype, Curr Opin Chem Biol, 12, 168, 10.1016/j.cbpa.2008.01.017
Lee, 2003, Custom DNA-binding proteins and artificial transcription factors, Curr Top Med Chem, 3, 645, 10.2174/1568026033452384
Joung, 2000, A bacterial two-hybrid selection system for studying protein-DNA and protein-protein interactions, Proc Natl Acad Sci U S A, 97, 7382, 10.1073/pnas.110149297
Dreier, 2005, Development of zinc finger domains for recognition of the 5′-CNN-3′ family DNA sequences and their use in the construction of artificial transcription factors, J Biol Chem, 280, 35588, 10.1074/jbc.M506654200
Segal, 2003, Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins, Biochemistry, 42, 2137, 10.1021/bi026806o
Park, 2003, Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors, Nat Biotechnol, 21, 1208, 10.1038/nbt868
Park, 2005, Phenotypic alteration and target gene identification using combinatorial libraries of zinc finger proteins in prokaryotic cells, J Bacteriol, 187, 5496, 10.1128/JB.187.15.5496-5499.2005
Lee, 2011, Engineering butanol-tolerance in escherichia coli with artificial transcription factor libraries, Biotechnol Bioeng, 108, 742, 10.1002/bit.22989
Lee, 2008, Phenotypic engineering by reprogramming gene transcription using novel artificial transcription factors in Escherichia coli, Nucleic Acids Res, 36, e102, 10.1093/nar/gkn449
Alper, 2007, Global transcription machinery engineering: a new approach for improving cellular phenotype, Metab Eng, 9, 258, 10.1016/j.ymben.2006.12.002
Alper, 2006, Engineering yeast transcription machinery for improved ethanol tolerance and production, Science, 314, 1565, 10.1126/science.1131969
Gregory, 2005, An altered-specificity DNA-binding mutant of Escherichia coli sigma70 facilitates the analysis of sigma70 function in vivo, Mol Microbiol, 56, 1208, 10.1111/j.1365-2958.2005.04624.x
Gardella, 1989, A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity, J Mol Biol, 206, 579, 10.1016/0022-2836(89)90567-6
Siegele, 1989, Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase, J Mol Biol, 206, 591, 10.1016/0022-2836(89)90568-8
Yu, 2008, A high-throughput screen for hyaluronic acid accumulation in recombinant Escherichia coli transformed by libraries of engineered sigma factors, Biotechnol Bioeng, 101, 788, 10.1002/bit.21947
Klein-Marcuschamer, 2009, Mutagenesis of the bacterial RNA polymerase alpha subunit for improvement of complex phenotypes, Appl Environ Microbiol, 75, 2705, 10.1128/AEM.01888-08
Klein-Marcuschamer, 2008, Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains, Proc Natl Acad Sci U S A, 105, 2319, 10.1073/pnas.0712177105
Zhang, 2012, Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance, Biotechnol Bioeng, 109, 1165, 10.1002/bit.24411
Liu, 2011, gTME for improved adaptation of Saccharomyces cerevisiae to corn cob acid hydrolysate, Appl Biochem Biotechnol, 164, 1150, 10.1007/s12010-011-9201-7
Klein-Marcuschamer, 2010, Method for designing and optimizing random-search libraries for strain improvement, Appl Environ Microbiol, 76, 5541, 10.1128/AEM.00828-10
Zhang, 2012, Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance, Appl Microbiol Biotechnol, 94, 1107, 10.1007/s00253-012-4012-5
Chen, 2011, Laboratory-evolved mutants of an exogenous global regulator, IrrE from Deinococcus radiodurans, enhance stress tolerances of Escherichia coli, PLoS One, 6, e16228, 10.1371/journal.pone.0016228
Liu, 2010, gTME for improved xylose fermentation of Saccharomyces cerevisiae, Appl Biochem Biotechnol, 160, 574, 10.1007/s12010-008-8431-9
Hong, 2010, Engineering global regulator Hha of Escherichia coli to control biofilm dispersal, Microb Biotechnol, 3, 717, 10.1111/j.1751-7915.2010.00220.x
Hong, 2010, Controlling biofilm formation, prophage excision and cell death by rewiring global regulator H-NS of Escherichia coli, Microb Biotechnol, 3, 344, 10.1111/j.1751-7915.2010.00164.x
Santos, 2012, Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli, Proc Natl Acad Sci U S A, 109, 13538, 10.1073/pnas.1206346109
Drummond, 2005, Why high-error-rate random mutagenesis libraries are enriched in functional and improved proteins, J Mol Biol, 350, 806, 10.1016/j.jmb.2005.05.023
Wang, 2009, Programming cells by multiplex genome engineering and accelerated evolution, Nature, 460, 894, 10.1038/nature08187
Isaacs, 2011, Precise manipulation of chromosomes in vivo enables genome-wide codon replacement, Science, 333, 348, 10.1126/science.1205822
Carr, 2012, Enhanced multiplex genome engineering through co-operative oligonucleotide co-selection, Nucleic Acids Res, 40, e132, 10.1093/nar/gks455
Lajoie, 2012, Manipulating replisome dynamics to enhance lambda Red-mediated multiplex genome engineering, Nucleic Acids Res, 10.1093/nar/gks751
Mosberg, 2012, Improving Lambda Red Genome Engineering in Escherichia coli via Rational Removal of Endogenous Nucleases, PLoS One, 7, e44638, 10.1371/journal.pone.0044638
Wang, 2012, Genome-scale promoter engineering by coselection MAGE, Nat Methods, 9, 591, 10.1038/nmeth.1971
Warner, 2010, Rapid profiling of a microbial genome using mixtures of barcoded oligonucleotides, Nat Biotechnol, 10.1038/nbt.1653
Sandoval, 2012, Strategy for directing combinatorial genome engineering in Escherichia coli, Proc Natl Acad Sci U S A, 109, 10540, 10.1073/pnas.1206299109
Ochi, 2007, From microbial differentiation to ribosome engineering, Biosci Biotechnol Biochem, 71, 1373, 10.1271/bbb.70007
Shima, 1996, Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2), J Bacteriol, 178, 7276, 10.1128/jb.178.24.7276-7284.1996
Hesketh, 1997, A novel method for improving Streptomyces coelicolor A3(2) for production of actinorhodin by introduction of rpsL (encoding ribosomal protein S12) mutations conferring resistance to streptomycin, J Antibiot (Tokyo), 50, 532, 10.7164/antibiotics.50.532
Okamoto-Hosoya, 2000, Resistance to paromomycin is conferred by rpsL mutations, accompanied by an enhanced antibiotic production in Streptomyces coelicolor A3(2), J Antibiot (Tokyo), 53, 1424, 10.7164/antibiotics.53.1424
Nishimura, 2007, Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2), J Bacteriol, 189, 3876, 10.1128/JB.01776-06
Hosoya, 1998, Acquisition of certain streptomycin-resistant (str) mutations enhances antibiotic production in bacteria, Antimicrob Agents Chemother, 42, 2041, 10.1128/AAC.42.8.2041
Kurosawa, 2006, Improvement of alpha-amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168, Appl Environ Microbiol, 72, 71, 10.1128/AEM.72.1.71-77.2006
Hu, 2002, Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans, J Bacteriol, 184, 3984, 10.1128/JB.184.14.3984-3991.2002
Inaoka, 2004, RNA polymerase mutation activates the production of a dormant antibiotic 3,3′-neotrehalosadiamine via an autoinduction mechanism in Bacillus subtilis, J Biol Chem, 279, 3885, 10.1074/jbc.M309925200
Hosaka, 2009, Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12, Nat Biotechnol, 27, 462, 10.1038/nbt.1538
Hosokawa, 2002, Streptomycin-resistant (rpsL) or rifampicin-resistant (rpoB) mutation in Pseudomonas putida KH146-2 confers enhanced tolerance to organic chemicals, Environ Microbiol, 4, 703, 10.1046/j.1462-2920.2002.00348.x
Hu, 2001, Novel approach for improving the productivity of antibiotic-producing strains by inducing combined resistant mutations, Appl Environ Microbiol, 67, 1885, 10.1128/AEM.67.4.1885-1892.2001
Tamehiro, 2003, Innovative approach for improvement of an antibiotic-overproducing industrial strain of Streptomyces albus, Appl Environ Microbiol, 69, 6412, 10.1128/AEM.69.11.6412-6417.2003
Zhang, 2002, Genome shuffling leads to rapid phenotypic improvement in bacteria, Nature, 415, 644, 10.1038/415644a
Gokhale, 1993, Protoplast fusion: a tool for intergeneric gene transfer in bacteria, Biotechnol Adv, 11, 199, 10.1016/0734-9750(93)90041-K
Patnaik, 2002, Genome shuffling of Lactobacillus for improved acid tolerance, Nat Biotechnol, 20, 707, 10.1038/nbt0702-707
Dai, 2004, Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723, Applied and Environmental Microbiology, 70, 2391, 10.1128/AEM.70.4.2391-2397.2004
Winkler, 2010, Novel Escherichia coli hybrids with enhanced butanol tolerance, Biotechnol Lett, 32, 915, 10.1007/s10529-010-0247-3
Zhang, 2012, Improved ethanol production by a xylose-fermenting recombinant yeast strain constructed through a modified genome shuffling method, Biotechnol Biofuels, 5, 46, 10.1186/1754-6834-5-46
Dai, 2005, Visualization of protoplast fusion and quantitation of recombination in fused protoplasts of auxotrophic strains of Escherichia coli, Metab Eng, 7, 45, 10.1016/j.ymben.2004.09.002
Winkler, 2012, Harnessing recombination to speed adaptive evolution in Escherichia coli, Metab Eng, 14, 487, 10.1016/j.ymben.2012.07.004
Lutz, 1997, Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements, Nucleic Acids Res, 25, 1203, 10.1093/nar/25.6.1203
Alper, 2007, Global transcription machinery engineering: a new approach for improving cellular phenotype, Metab Eng, 9, 258, 10.1016/j.ymben.2006.12.002
Dai, 2004, Genome shuffling improves degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723, Appl Environ Microbiol, 70, 2391, 10.1128/AEM.70.4.2391-2397.2004