CO2 selectivity of flower-like MoS2 grown on TiO2 nanofibers coated with acetic acid-treated graphitic carbon nitride

Solar Energy Materials and Solar Cells - Tập 221 - Trang 110890 - 2021
Suhee Kang1, Haritham Khan1, Caroline Sunyong Lee1
1Department of Materials and Chemical Engineering, Hanyang University, South Korea

Tài liệu tham khảo

Shen, 2020, 1900546 Wang, 2019, Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion, Nat. Commun., 10, 676, 10.1038/s41467-019-08651-x Chang, 2016, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts, Energy Environ. Sci., 9, 2177, 10.1039/C6EE00383D Shehzad, 2018, A critical review on TiO2 based photocatalytic CO2 reduction system: strategies to improve efficiency, Journal of CO2 Utilization, 26, 98, 10.1016/j.jcou.2018.04.026 Wang, 2020, Efficient Z-scheme photocatalysts of ultrathin g-C3N4-wrapped Au/TiO2-nanocrystals for enhanced visible-light-driven conversion of CO2 with H2O, Appl. Catal. B Environ., 263, 118314, 10.1016/j.apcatb.2019.118314 Li, 2017, Fabrication of heterostructured g-C3N4/Ag-TiO2 hybrid photocatalyst with enhanced performance in photocatalytic conversion of CO2 under simulated sunlight irradiation, Appl. Surf. Sci., 402, 198, 10.1016/j.apsusc.2017.01.041 Zhao, 2017, Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: a critical review, J. Mater. Chem., 5, 21625, 10.1039/C7TA07290B Ma, 2014, Titanium dioxide-based nanomaterials for photocatalytic fuel generations, Chem. Rev., 114, 9987, 10.1021/cr500008u Habisreutinger, 2013, Photocatalytic reduction of CO2 on TiO2 and other semiconductors, Angew. Chem. Int. Ed., 52, 7372, 10.1002/anie.201207199 Choi, 2018, Fabrication of an automatic color-tuned system with flexibility using a dry deposited photoanode, International Journal of Precision Engineering and Manufacturing-Green Technology, 5, 643, 10.1007/s40684-018-0067-9 Ali, 2018, Synthesis and characterization of a ternary nanocomposite based on CdSe decorated graphene-TiO2 and its application in the quantitative analysis of alcohol with reduction of CO2, J. Korean Ceram. Soc, 55, 381, 10.4191/kcers.2018.55.4.03 Di, 2018, Defect-Rich Bi12O17Cl2 nanotubes self-accelerating charge separation for boosting photocatalytic CO2 reduction, Angew. Chem. Int. Ed., 57, 14847, 10.1002/anie.201809492 He, 2016, Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid, Appl. Surf. Sci., 364, 416, 10.1016/j.apsusc.2015.12.163 Aguirre, 2017, Cu2O/TiO2 heterostructures for CO2 reduction through a direct Z-scheme: protecting Cu2O from photocorrosion, Appl. Catal. B Environ., 217, 485, 10.1016/j.apcatb.2017.05.058 Duan, 2019, Electrospinning fabricating Au/TiO2 network-like nanofibers as visible light activated photocatalyst, Sci. Rep., 9, 8008, 10.1038/s41598-019-44422-w Jang, 2019, Optimization of electrospinning parameters for electrospun nanofiber-based triboelectric nanogenerators, International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 731, 10.1007/s40684-019-00134-0 Li, 2011, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b Xiang, 2012, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles, J. Am. Chem. Soc., 134, 6575, 10.1021/ja302846n Sabarinathan, 2017, Highly efficient visible-light photocatalytic activity of MoS2–TiO2 mixtures hybrid photocatalyst and functional properties, RSC Adv., 7, 24754, 10.1039/C7RA03633G Splendiani, 2010, Emerging photoluminescence in monolayer MoS2, Nano Lett., 10, 1271, 10.1021/nl903868w Wen, 2017, A review on g-C3N4-based photocatalysts, Appl. Surf. Sci., 391, 72, 10.1016/j.apsusc.2016.07.030 Morris, 2017, Reduction of carbon dioxide and organic carbonyls by hydrosilanes catalysed by the perrhenate anion, Catalysis Science & Technology, 7, 2838, 10.1039/C7CY00772H Ganatra, 2014, Few-layer MoS2: a promising layered semiconductor, ACS Nano, 8, 4074, 10.1021/nn405938z Zhao, 2015, Graphitic carbon nitride based nanocomposites: a review, Nanoscale, 7, 15, 10.1039/C4NR03008G Liu, 2019, Quenching induced hierarchical 3D porous g-C3N4 with enhanced photocatalytic CO2 reduction activity, Chem. Commun., 55, 14023, 10.1039/C9CC07647F Jo, 2016, Synthesis of MoS2 nanosheet supported Z-scheme TiO2/g-C3N4 photocatalysts for the enhanced photocatalytic degradation of organic water pollutants, RSC Adv., 6, 10487, 10.1039/C5RA24676H Zhang, 2019, Growth of MoS2 nanosheets on TiO2/g-C3N4 nanocomposites to enhance the visible-light photocatalytic ability, J. Mater. Sci. Mater. Electron., 30, 5393, 10.1007/s10854-019-00832-0 Hu, 2020, Nano-layer based 1T-rich MoS2/g-C3N4 co-catalyst system for enhanced photocatalytic and photoelectrochemical activity, Appl. Catal. B Environ., 268, 118466, 10.1016/j.apcatb.2019.118466 Pan, 2019, MoS2 quantum dots modified black Ti3+–TiO2/g-C3N4 hollow nanosphere heterojunction toward photocatalytic hydrogen production enhancement, Solar RRL, 3, 1900337, 10.1002/solr.201900337 Ge, 2019, S-scheme heterojunction TiO2/CdS nanocomposite nanofiber as H2-production photocatalyst, ChemCatChem, 11, 6301, 10.1002/cctc.201901486 Fu, 2019, Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst, Appl. Catal. B Environ., 243, 556, 10.1016/j.apcatb.2018.11.011 He, 2020, 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity, Appl. Catal. B Environ., 272, 119006, 10.1016/j.apcatb.2020.119006 Low, 2017, Heterojunction photocatalysts, Adv. Mater., 29, 1601694, 10.1002/adma.201601694 Maeda, 2013, Z-scheme water splitting using two different semiconductor photocatalysts, ACS Catal., 3, 1486, 10.1021/cs4002089 Xu, 2020, S-scheme heterojunction photocatalyst, Inside Chem., 6, 1543 Yu, 2018, Surface engineering for extremely enhanced charge separation and photocatalytic hydrogen evolution on g-C3N4, Adv. Mater., 30, 1705060, 10.1002/adma.201705060 Crake, 2019, Titanium dioxide/carbon nitride nanosheet nanocomposites for gas phase CO2 photoreduction under UV-visible irradiation, Appl. Catal. B Environ., 242, 369, 10.1016/j.apcatb.2018.10.023 Kusior, 2018, Structural properties of TiO2 nanomaterials, J. Mol. Struct., 1157, 327, 10.1016/j.molstruc.2017.12.064 Ong, 2015, Surface charge modification via protonation of graphitic carbon nitride (g-C3N4) for electrostatic self-assembly construction of 2D/2D reduced graphene oxide (rGO)/g-C3N4 nanostructures toward enhanced photocatalytic reduction of carbon dioxide to methane, Nanomater. Energy, 13, 757, 10.1016/j.nanoen.2015.03.014 Wang, 2019, Amino-assisted NH2-UiO-66 anchored on porous g-C3N4 for enhanced visible-light-driven CO2 reduction, ACS Appl. Mater. Interfaces, 11, 30673, 10.1021/acsami.9b04302 Lin, 2016, Tri-s-triazine-Based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis, ACS Catal., 6, 3921, 10.1021/acscatal.6b00922 Guan, 2018, Ti4O7/g-C3N4 for visible light photocatalytic oxidation of hypophosphite: effect of mass ratio of Ti4O7/g-C3N4, Frontiers in Chemistry, 6, 313, 10.3389/fchem.2018.00313 Liu, 2015, Vertical single or few-layer MoS2 nanosheets rooting into TiO2 nanofibers for highly efficient photocatalytic hydrogen evolution, Appl. Catal. B Environ., 164, 1, 10.1016/j.apcatb.2014.08.046 Wang, 2018, MoS2 quantum dots@TiO2 nanotube Arrays: an extended-spectrum-driven photocatalyst for solar hydrogen evolution, ChemSusChem, 11, 1708, 10.1002/cssc.201800379 Gopalakrishnan, 2015, Electrochemical synthesis of luminescent MoS2 quantum dots, Chem. Commun., 51, 6293, 10.1039/C4CC09826A Alcudia-Ramos, 2020, Fabrication of g-C3N4/TiO2 heterojunction composite for enhanced photocatalytic hydrogen production, Ceram. Int., 46, 38, 10.1016/j.ceramint.2019.08.228 Wang, 2019, Organic solar cells based on high hole mobility conjugated polymer and nonfullerene acceptor with comparable bandgaps and suitable energy level offsets showing significant suppression of jsc–voc trade-off, Solar RRL, 3, 1900079, 10.1002/solr.201900079 Bian, 2018, In situ synthesis of few-layered g-C3N4 with vertically aligned MoS2 loading for boosting solar-to-hydrogen generation, Small, 14, 1703003, 10.1002/smll.201703003 Fu, 2016, Strong interfacial coupling of MoS2/g-C3N4 van de Waals solids for highly active water reduction, Nanomater. Energy, 27, 44, 10.1016/j.nanoen.2016.06.037 Walmsley, 2019, Gate-tunable photoresponse time in black phosphorus–MoS2 heterojunctions, Advanced Optical Materials, 7, 1800832, 10.1002/adom.201800832 Yang, 2018, Sb doped SnO2-decorated porous g-C3N4 nanosheet heterostructures with enhanced photocatalytic activities under visible light irradiation, Appl. Catal. B Environ., 221, 670, 10.1016/j.apcatb.2017.09.041 Chen, 2014, Spatial engineering of photo-active sites on g-C3N4 for efficient solar hydrogen generation, J. Mater. Chem., 2, 4605, 10.1039/c3ta14811d Li, 2019, Preparation and enhanced photocatalytic performance of sulfur doped terminal-methylated g-C3N4 nanosheets with extended visible-light response, J. Mater. Chem., 7, 20640, 10.1039/C9TA07014A Xing, 2018, Modulation of the reduction potential of TiO2–x by fluorination for efficient and selective CH4 generation from CO2 photoreduction, Nano Lett., 18, 3384, 10.1021/acs.nanolett.8b00197 Ji, 2016, Heptazine-based graphitic carbon nitride as an effective hydrogen purification membrane, RSC Adv., 6, 52377, 10.1039/C6RA06425F Wei, 2018, Efficient photocatalysts of TiO2 nanocrystals-supported PtRu alloy nanoparticles for CO2 reduction with H2O: synergistic effect of Pt-Ru, Appl. Catal. B Environ., 236, 445, 10.1016/j.apcatb.2018.05.043 Wu, 2019, Multifunctional photocatalysts of Pt-decorated 3DOM perovskite-type SrTiO3 with enhanced CO2 adsorption and photoelectron enrichment for selective CO2 reduction with H2O to CH4, J. Catal., 377, 309, 10.1016/j.jcat.2019.07.037 Mo, 2019, Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction, Appl. Catal. B Environ., 256, 117854, 10.1016/j.apcatb.2019.117854 Thomas, 2008, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem., 18, 4893, 10.1039/b800274f Wang, 2016, Surprisingly advanced CO2 photocatalytic conversion over thiourea derived g-C3N4 with water vapor while introducing 200–420nm UV light, Journal of CO2 Utilization, 14, 143, 10.1016/j.jcou.2016.04.006