CO2 electroreduction to multicarbon products from carbonate capture liquid

Joule - Tập 7 - Trang 1277-1288 - 2023
Geonhui Lee1, Armin Sedighian Rasouli1, Byoung-Hoon Lee1, Jinqiang Zhang1, Da Hye Won2, Yurou Celine Xiao3, Jonathan P. Edwards3, Mi Gyoung Lee1, Eui Dae Jung1, Fatemeh Arabyarmohammadi3, Hengzhou Liu4,5, Ivan Grigioni1, Jehad Abed1, Tartela Alkayyali3, Shijie Liu3, Ke Xie1, Rui Kai Miao3, Sungjin Park1, Roham Dorakhan1, Yong Zhao3
1Department of Electrical and Computer Engineering, University of Toronto, 35 St. George Street, Toronto, ON M5S 1A4, Canada
2Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
3Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
4Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
5Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208 USA

Tài liệu tham khảo

Brethomé, 2018, Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power, Nat. Energy, 3, 553, 10.1038/s41560-018-0150-z Kätelhön, 2019, Climate change mitigation potential of carbon capture and utilization in the chemical industry, Proc. Natl. Acad. Sci. USA, 116, 11187, 10.1073/pnas.1821029116 Socolow, 2011 Lee, 2021, Electrochemical upgrade of CO2 from amine capture solution, Nat. Energy, 6, 46, 10.1038/s41560-020-00735-z Li, 2019, CO2 electroreduction from carbonate electrolyte, ACS Energy Lett., 4, 1427, 10.1021/acsenergylett.9b00975 Li, 2019, Electrolytic conversion of bicarbonate into CO in a flow cell, Joule, 3, 1487, 10.1016/j.joule.2019.05.021 Zhang, 2022, Porous metal electrodes enable efficient electrolysis of carbon capture solutions, Energy Environ. Sci., 15, 705, 10.1039/D1EE02608A Xiao, 2023, Direct carbonate electrolysis into pure syngas, EES Catal., 1, 54, 10.1039/D2EY00046F Kar, 2019, Integrated CO2 capture and conversion to formate and methanol: connecting two threads, Acc. Chem. Res., 52, 2892, 10.1021/acs.accounts.9b00324 Kothandaraman, 2021, Integrated capture and conversion of CO2 to methane using a water-lean, post-combustion CO2 capture solvent, ChemSusChem, 14, 4812, 10.1002/cssc.202101590 Sen, 2020, Hydroxide based integrated CO2 capture from air and conversion to methanol, J. Am. Chem. Soc., 142, 4544, 10.1021/jacs.9b12711 Keith, 2018, A process for capturing CO2 from the atmosphere, Joule, 2, 1573, 10.1016/j.joule.2018.05.006 García de Arquer, 2020, CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2, Science, 367, 661, 10.1126/science.aay4217 Li, 2020, Molecular tuning of CO2-to-ethylene conversion, Nature, 577, 509, 10.1038/s41586-019-1782-2 Rabinowitz, 2020, The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem, Nat. Commun., 11, 5231, 10.1038/s41467-020-19135-8 Alerte, 2021, Downstream of the CO2 electrolyzer: assessing the energy intensity of product separation, ACS Energy Lett., 6, 4405, 10.1021/acsenergylett.1c02263 Huang, 2021, CO2 electrolysis to multicarbon products in strong acid, Science, 372, 1074, 10.1126/science.abg6582 O’Brien, 2021, Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration, ACS Energy Lett., 6, 2952, 10.1021/acsenergylett.1c01122 Zhao, 2023, Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment, Nat. Synth., 10.1038/s44160-022-00234-x Gabardo, 2019, Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly, Joule, 3, 2777, 10.1016/j.joule.2019.07.021 Kim, 2021, Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings, Nat. Energy, 6, 1026, 10.1038/s41560-021-00920-8 Idem, 2015, Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants, Int. J. Greenhouse Gas Control, 40, 6, 10.1016/j.ijggc.2015.06.005 Lin, 2016, Approaching a reversible stripping process for CO2 capture, Chem. Eng. J., 283, 1033, 10.1016/j.cej.2015.08.086 Greenblatt, 2018, The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products, Joule, 2, 381, 10.1016/j.joule.2018.01.014 Lees, 2022, Continuum model to define the chemistry and mass transfer in a bicarbonate electrolyzer, ACS Energy Lett., 7, 834, 10.1021/acsenergylett.1c02522 Kas, 2022, Modeling the local environment within porous electrode during electrochemical reduction of bicarbonate, Ind. Eng. Chem. Res., 61, 10461, 10.1021/acs.iecr.2c00352 Dinh, 2018, CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface, Science, 360, 783, 10.1126/science.aas9100 Varela, 2016, Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH, Cat. Today, 260, 8, 10.1016/j.cattod.2015.06.009 Jouny, 2018, General techno-economic analysis of CO2 electrolysis systems, Ind. Eng. Chem. Res., 57, 2165, 10.1021/acs.iecr.7b03514 Shin, 2021, Techno-economic assessment of low-temperature carbon dioxide electrolysis, Nat. Sustain., 4, 911, 10.1038/s41893-021-00739-x Zhang, 2020, Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction, Nat. Energy, 5, 684, 10.1038/s41560-020-0667-9 Li, 2020, Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces, Nat. Catal., 3, 75, 10.1038/s41929-019-0383-7 Ozden, 2020, High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer, ACS Energy Lett., 5, 2811, 10.1021/acsenergylett.0c01266 Mardle, 2021, Carbonate ion crossover in zero-gap, KOH anolyte CO2 electrolysis, J. Phys. Chem. C, 125, 25446, 10.1021/acs.jpcc.1c08430