CO2 electroreduction to multicarbon products from carbonate capture liquid
Tài liệu tham khảo
Brethomé, 2018, Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power, Nat. Energy, 3, 553, 10.1038/s41560-018-0150-z
Kätelhön, 2019, Climate change mitigation potential of carbon capture and utilization in the chemical industry, Proc. Natl. Acad. Sci. USA, 116, 11187, 10.1073/pnas.1821029116
Socolow, 2011
Lee, 2021, Electrochemical upgrade of CO2 from amine capture solution, Nat. Energy, 6, 46, 10.1038/s41560-020-00735-z
Li, 2019, CO2 electroreduction from carbonate electrolyte, ACS Energy Lett., 4, 1427, 10.1021/acsenergylett.9b00975
Li, 2019, Electrolytic conversion of bicarbonate into CO in a flow cell, Joule, 3, 1487, 10.1016/j.joule.2019.05.021
Zhang, 2022, Porous metal electrodes enable efficient electrolysis of carbon capture solutions, Energy Environ. Sci., 15, 705, 10.1039/D1EE02608A
Xiao, 2023, Direct carbonate electrolysis into pure syngas, EES Catal., 1, 54, 10.1039/D2EY00046F
Kar, 2019, Integrated CO2 capture and conversion to formate and methanol: connecting two threads, Acc. Chem. Res., 52, 2892, 10.1021/acs.accounts.9b00324
Kothandaraman, 2021, Integrated capture and conversion of CO2 to methane using a water-lean, post-combustion CO2 capture solvent, ChemSusChem, 14, 4812, 10.1002/cssc.202101590
Sen, 2020, Hydroxide based integrated CO2 capture from air and conversion to methanol, J. Am. Chem. Soc., 142, 4544, 10.1021/jacs.9b12711
Keith, 2018, A process for capturing CO2 from the atmosphere, Joule, 2, 1573, 10.1016/j.joule.2018.05.006
García de Arquer, 2020, CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2, Science, 367, 661, 10.1126/science.aay4217
Li, 2020, Molecular tuning of CO2-to-ethylene conversion, Nature, 577, 509, 10.1038/s41586-019-1782-2
Rabinowitz, 2020, The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem, Nat. Commun., 11, 5231, 10.1038/s41467-020-19135-8
Alerte, 2021, Downstream of the CO2 electrolyzer: assessing the energy intensity of product separation, ACS Energy Lett., 6, 4405, 10.1021/acsenergylett.1c02263
Huang, 2021, CO2 electrolysis to multicarbon products in strong acid, Science, 372, 1074, 10.1126/science.abg6582
O’Brien, 2021, Single pass CO2 conversion exceeding 85% in the electrosynthesis of multicarbon products via local CO2 regeneration, ACS Energy Lett., 6, 2952, 10.1021/acsenergylett.1c01122
Zhao, 2023, Conversion of CO2 to multicarbon products in strong acid by controlling the catalyst microenvironment, Nat. Synth., 10.1038/s44160-022-00234-x
Gabardo, 2019, Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly, Joule, 3, 2777, 10.1016/j.joule.2019.07.021
Kim, 2021, Tailored catalyst microenvironments for CO2 electroreduction to multicarbon products on copper using bilayer ionomer coatings, Nat. Energy, 6, 1026, 10.1038/s41560-021-00920-8
Idem, 2015, Practical experience in post-combustion CO2 capture using reactive solvents in large pilot and demonstration plants, Int. J. Greenhouse Gas Control, 40, 6, 10.1016/j.ijggc.2015.06.005
Lin, 2016, Approaching a reversible stripping process for CO2 capture, Chem. Eng. J., 283, 1033, 10.1016/j.cej.2015.08.086
Greenblatt, 2018, The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products, Joule, 2, 381, 10.1016/j.joule.2018.01.014
Lees, 2022, Continuum model to define the chemistry and mass transfer in a bicarbonate electrolyzer, ACS Energy Lett., 7, 834, 10.1021/acsenergylett.1c02522
Kas, 2022, Modeling the local environment within porous electrode during electrochemical reduction of bicarbonate, Ind. Eng. Chem. Res., 61, 10461, 10.1021/acs.iecr.2c00352
Dinh, 2018, CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface, Science, 360, 783, 10.1126/science.aas9100
Varela, 2016, Controlling the selectivity of CO2 electroreduction on copper: the effect of the electrolyte concentration and the importance of the local pH, Cat. Today, 260, 8, 10.1016/j.cattod.2015.06.009
Jouny, 2018, General techno-economic analysis of CO2 electrolysis systems, Ind. Eng. Chem. Res., 57, 2165, 10.1021/acs.iecr.7b03514
Shin, 2021, Techno-economic assessment of low-temperature carbon dioxide electrolysis, Nat. Sustain., 4, 911, 10.1038/s41893-021-00739-x
Zhang, 2020, Molecular engineering of dispersed nickel phthalocyanines on carbon nanotubes for selective CO2 reduction, Nat. Energy, 5, 684, 10.1038/s41560-020-0667-9
Li, 2020, Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces, Nat. Catal., 3, 75, 10.1038/s41929-019-0383-7
Ozden, 2020, High-rate and efficient ethylene electrosynthesis using a catalyst/promoter/transport layer, ACS Energy Lett., 5, 2811, 10.1021/acsenergylett.0c01266
Mardle, 2021, Carbonate ion crossover in zero-gap, KOH anolyte CO2 electrolysis, J. Phys. Chem. C, 125, 25446, 10.1021/acs.jpcc.1c08430