Sự Cắt Xén và Nứt Do Tiêm CO2 Trong Các Môi Trường Địa Nhiệt Thông Thường Và Siêu Nóng Có Sẵn Nứt

Rock Mechanics and Rock Engineering - Tập 56 Số 3 - Trang 1663-1677 - 2023
Eko Pramudyo1, Ryota Goto1, Kiyotoshi Sakaguchi1, Kengo Nakamura1, Noriaki Watanabe1
1Department of Environmental Studies for Advanced Society, Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan

Tóm tắt

Tóm tắtNghiên cứu này làm rõ khả năng tạo ra một mạng lưới nứt-cloud phức tạp (CFN) do tiêm CO2 gây ra trong đá granite, cùng với sự cắt xén (trượt cắt) các nứt tự nhiên đã có sẵn dưới các điều kiện địa nhiệt thông thường (~ 150–300 °C) và siêu nóng (> ~ 400 °C), có thể cung cấp thêm các lối đi kết nối giữa các nứt tự nhiên được kích thích. Ở đây, chúng tôi thực hiện một loạt thí nghiệm dưới các trạng thái áp lực ba trục ở 150 °C và 450 °C trên các mẫu granite hình trụ có một vết cắt (đại diện cho một nứt tự nhiên) nghiêng 45° so với trục của mẫu. Tiêm CO2 đã gây ra trượt cắt động trên vết cắt, với tốc độ trượt cao hơn ở 150 °C nhờ độ đàn hồi cao hơn của đá so với ở 450 °C. Độ nhớt thấp hơn của CO2 cũng cho phép nó tạo áp lực trên vết cắt một cách đồng đều hơn, dẫn đến tốc độ trượt và độ dịch chuyển trượt cao hơn so với các thí nghiệm dựa trên tiêm nước ở 150 °C. Điều này cho thấy rằng dưới các điều kiện địa nhiệt thông thường, việc tiêm CO2 có thể kích thích cùng một thể tích đá như trong việc tiêm nước ở áp suất giếng thấp hơn. Các CFN sau đó được hình thành qua việc tiêm CO2 ở các áp suất tương tự như những gì được dự đoán bởi tiêu chuẩn thất bại Griffith khi trượt cắt của vết cắt tiến triển ở cả hai nhiệt độ thí nghiệm. Các thí nghiệm cũng tiết lộ những thách thức tiềm ẩn liên quan đến việc tiêm CO2 trong các môi trường địa nhiệt có nứt tự nhiên, chẳng hạn như CFNs có khe hẹp, do giảm áp lực chênh lệch trong quá trình hình thành; tất cả những yếu tố này cần được giải quyết trong các nghiên cứu tương lai.

Từ khóa


Tài liệu tham khảo

Asanuma H, Muraoka H, Tsuchiya N, Ito H (2012) The concept of the Japan Beyond-Brittle Project (JBBP) to develop EGS reservoirs in ductile zones. GRC Trans 36:359–364

Batchelor, AS (1986) Reservoir behaviour in a stimulated hot dry rock system. In: Proceedings on Eleventh Workshop on Geothermal Reservoir Engineering, pp 35–41

Bauer S, Huang K, Chen Q, Ghassemi A, Barrow P (2016) Laboratory and Numerical Evaluation of EGS Shear Stimulation. In: Proc, 41st Workshop on Geothermal Reservoir Engineering Stanford University, Stanford

Biegel RL, Wang W, Scholz CH, Boitnott GN, Yoshioka N (1992) Micromechanics of rock friction 1. Effects of surface roughness on initial friction and slip hardening in westerly granite. J Geophys Res Solid Earth 97(B6):8951–8964

Brown DW (2000) A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University, 233–238.

Byerlee JD (1967) Frictional characteristics of granite under high confining pressure. J Geophys Res 72(14):3639–3648. https://doi.org/10.1029/jz072i014p03639

Byerlee JD (1970) The mechanics of stick-slip. Tectonophysics 9(5):475–486. https://doi.org/10.1016/0040-1951(70)90059-4

Cornet FH, Jianmin, Y (1995) Analysis of induced seismicity for stress field determination and pore pressure mapping. In Mechanics Problems in Geodynamics Part I (pp. 677–700). Birkhäuser Basel.

Cornet FH (2016) Seismic and aseismic motions generated by fluid injections. Geomech Energy Env 5:42–54. https://doi.org/10.1016/j.gete.2015.12.003

Cox SF (2010) The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids 1–2:217–233. https://doi.org/10.1111/j.1468-8123.2010.00281.x

Elders WA, Shnell J, Friðleifsson GÓ, Albertsson A, Zierenberg RA (2018) Improving geothermal economics by utilizing supercritical and superhot systems to produce flexible and integrated combinations of electricity, hydrogen, and minerals. GRC Trans 42

Evans KF, Genter A, Sausse J (2005) Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations. J Geophys Res Solid Earth 110(B4). https://doi.org/10.1029/2004JB003168

Ghassemi A (2012) A review of some rock mechanics issues in geothermal reservoir development. Geotech Geol Eng 30(3):647–664. https://doi.org/10.1007/s10706-012-9508-3

Goto R, Watanabe N, Sakaguchi K, Miura T, Chen Y, Ishibashi T, Pramudyo E, Parisio F, Yoshioka K, Nakamura K, Komai T, Tsuchiya N (2021) Creating cloud-fracture network by flow-induced microfracturing in superhot geothermal environments. Rock Mech Rock Eng 54(6):2959–2974. https://doi.org/10.1007/s00603-021-02416-z

Goto R, Sakaguchi K, Parisio F, Yoshioka K, Pramudyo E, Watanabe N (2022) Wellbore stability in high-temperature granite under true triaxial stress. Geothermics 100:102334. https://doi.org/10.1016/j.geothermics.2021.102334

Griffith AA (1924) Theory of rupture. (J Waltman, delft). In: Biezeno, CB, Brgers JM (Eds.). In: Proceedings of the First International Congress on Applied Mechanics: 55–63

Hirose T, Mizoguchi K, Shimamoto T (2012) Wear processes in rocks at slow to high slip rates. J Struct Geol 38:102–116. https://doi.org/10.1016/j.jsg.2011.12.007

Hu L, Ghassemi A (2020) Heat production from lab-scale enhanced geothermal systems in granite and gabbro. Int J Rock Mech Min Sci 126:104205. https://doi.org/10.1016/j.ijrmms.2019.104205

Huang K, Cheng Q, Ghassemi A, Bauer S (2019) Investigation of shear slip in hot fractured rock. Int J Rock Mech Min Sci 120:68–81. https://doi.org/10.1016/j.ijrmms.2019.05.006

Ishibashi T, Watanabe N, Asanuma H, Tsuchiya N (2016) Linking microearthquakes to fracture permeability change: the role of surface roughness. Geophys Res Lett 43(14):7486–7493. https://doi.org/10.1002/2016GL069478

Jaeger JC, Cook NGW (1979) Fundamental of rock mechanics, 3rd edn. Chapman & Hall, London

Lin W, Nakamura T, Takahashi M (2003) Anisotropy of thermal property, ultrasonic wave velocity, strength property and deformability in Inada granite. J Jpn Soc Eng Geol 44(3):175–187. https://doi.org/10.5110/jjseg.44.175

Lu SM (2018) A global review of enhanced geothermal system (EGS). Renew Sustain Energy Rev 81:2902–2921. https://doi.org/10.1016/j.rser.2017.06.097

Mitchell EK, Fialko Y, Brown KM (2013) Temperature dependence of frictional healing of Westerly granite: experimental observations and numerical simulations. Geochem Geophys Geosyst 14(3):567–582. https://doi.org/10.1029/2012GC004241

Nemoto K, Moriya H, Niitsuma H, Tsuchiya N (2008) Mechanical and hydraulic coupling of injection-induced slip along pre-existing fractures. Geothermics 37(2):157–172. https://doi.org/10.1016/j.geothermics.2007.11.001

Ohnaka M (1975) Frictional characteristics of typical rocks. J Phys Earth 23(1):87–112. https://doi.org/10.4294/jpe1952.23.87

Parisio F, Vilarrasa V (2020) Sinking CO2 in supercritical reservoirs. Geophys Res Lett. https://doi.org/10.1029/2020GL090456

Parisio F, Yoshioka K, Sakaguchi K, Goto R, Miura T, Pramudyo E, Ishibashi T, Watanabe N (2021) A laboratory study of hydraulic fracturing at the brittle-ductile transition. Sci Rep 11(1):1–16. https://doi.org/10.1038/s41598-021-01388-y

Pine RJ, Batchelor AS (1984) Downward migration of shearing in jointed rock during hydraulic injections. Int J Rock Mech Min Sci Geomech Abstr 21(5):249–263. https://doi.org/10.1016/0148-9062(84)92681-0

Pramudyo E, Goto R, Watanabe N, Sakaguchi K, Nakamura K, Komai T (2021) CO2 injection-induced complex cloud-fracture networks in granite at conventional and superhot geothermal conditions. Geothermics. https://doi.org/10.1016/j.geothermics.2021.102265

Pruess K (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35(4):351–367. https://doi.org/10.1016/j.geothermics.2006.08.002

Randolph JB, Saar MO (2011) Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys Res Lett. https://doi.org/10.1029/2011GL047265

Rinaldi AP, Rutqvist J, Sonnenthal EL, Cladouhos TT (2015) Coupled THM modeling of hydroshearing stimulation in tight fractured volcanic rock. Trans Porous Media 108(1):131–150. https://doi.org/10.1007/s11242-014-0296-5

Rutqvist J, Rinaldi AP (2019) Fault reactivation and seismicity associated with geologic carbon storage, shale-gas fracturing and geothermal stimulation-observations from recent modeling studies. In: Rock Mechanics for Natural Resources and Infrastructure Development (pp. 3390–3397). CRC Press

Secor DT (1965) Role of fluid pressure in jointing. Am J Sci 263(8):633–646

Tester JW, Anderson BJ, Batchelor AS, Blackwell DD, DiPippo R, Drake EM, Garnish J, Livesay B, Moore MC, Nichols K, Petty S, Toksöz MN, Veatch Jr. RW (2006) The future of geothermal energy impact of enhanced geothermal system (EGS) on the United States in the 21st Century. Massachusetts Institute of Technology.

Wallroth T, Eliasson T, Sundquist U (1999) Hot dry rock research experiments at Fjällbacka, Sweden. Geothermics 28(4–5):617–625. https://doi.org/10.1016/S0375-6505(99)00032-2

Watanabe N, Numakura T, Sakaguchi K, Saishu H, Okamoto A, Ingebritsen SE, Tsuchiya N (2017a) Potentially exploitable supercritical geothermal resources in the ductile crust. Nat Geosci 10(2):140–144. https://doi.org/10.1038/ngeo2879

Watanabe N, Egawa M, Sakaguchi K, Ishibashi T, Tsuchiya N (2017b) Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions. Geophys Res Lett 44(11):5468–5475. https://doi.org/10.1002/2017GL073898

Watanabe N, Sakaguchi K, Goto R, Miura T, Yamane K, Ishibashi T, Chen Y, Komai T, Tsuchiya N (2019) Cloud-fracture networks as a means of accessing superhot geothermal energy. Sci Rep 9(1):939. https://doi.org/10.1038/s41598-018-37634-z

Watanabe N, Saito K, Okamoto A, Nakamura K, Ishibashi T, Saishu H, Komai T, Tsuchiya N (2020) Stabilizing and enhancing permeability for sustainable and profitable energy extraction from superhot geothermal environments. Appl Energy 260:114306. https://doi.org/10.1016/j.apenergy.2019.114306

Watanabe N, Abe H, Okamoto A, Nakamura K, Komai T (2021a) Formation of amorphous silica nanoparticles and its impact on permeability of fractured granite in superhot geothermal environments. Sci Rep 11(1):5340. https://doi.org/10.1038/s41598-021-84744-2

Watanabe N, Takahashi K, Takahashi R, Nakamura K, Kumano Y, Akaku K, Tamagawa T, Komai T (2021b) Novel chemical stimulation for geothermal reservoirs by chelating agent driven selective mineral dissolution in fractured rocks. Sci Rep 11(1):19994. https://doi.org/10.1038/s41598-021-99511-6

Wilkins R, Menefee AH, Clarens AF (2016) Environmental life cycle analysis of water and CO2-based fracturing fluids used in unconventional gas production. Environ Sci Technol 50(23):13134–13141. https://doi.org/10.1021/acs.est.6b02913

Yamaguchi U (1970) The number of test-pieces required to determine the strength of rock. Int J Rock Mech Min Sci Geomech Abstr 7(2):209–227. https://doi.org/10.1016/0148-9062(70)90013-6

Ye Z, Ghassemi A (2018) Injection-induced shear slip and permeability enhancement in granite fractures. J Geophys Res Solid Earth 123(10):9009–9032. https://doi.org/10.1029/2018JB016045

Ye Z, Ghassemi A (2019) Injection-induced propagation and coalescence of preexisting fractures in granite under triaxial stress. J Geophys Res Solid Earth 124(8):7806–7821. https://doi.org/10.1029/2019JB017400

Ye Z, Ghassemi A (2020) Heterogeneous fracture slip and aseismic-seismic transition in a triaxial injection test. Geophys Res Lett 47(14):1–9. https://doi.org/10.1029/2020GL087739