Sự Cắt Xén và Nứt Do Tiêm CO2 Trong Các Môi Trường Địa Nhiệt Thông Thường Và Siêu Nóng Có Sẵn Nứt
Tóm tắt
Từ khóa
Tài liệu tham khảo
Asanuma H, Muraoka H, Tsuchiya N, Ito H (2012) The concept of the Japan Beyond-Brittle Project (JBBP) to develop EGS reservoirs in ductile zones. GRC Trans 36:359–364
Batchelor, AS (1986) Reservoir behaviour in a stimulated hot dry rock system. In: Proceedings on Eleventh Workshop on Geothermal Reservoir Engineering, pp 35–41
Bauer S, Huang K, Chen Q, Ghassemi A, Barrow P (2016) Laboratory and Numerical Evaluation of EGS Shear Stimulation. In: Proc, 41st Workshop on Geothermal Reservoir Engineering Stanford University, Stanford
Biegel RL, Wang W, Scholz CH, Boitnott GN, Yoshioka N (1992) Micromechanics of rock friction 1. Effects of surface roughness on initial friction and slip hardening in westerly granite. J Geophys Res Solid Earth 97(B6):8951–8964
Brown DW (2000) A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings of the Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University, 233–238.
Byerlee JD (1967) Frictional characteristics of granite under high confining pressure. J Geophys Res 72(14):3639–3648. https://doi.org/10.1029/jz072i014p03639
Byerlee JD (1970) The mechanics of stick-slip. Tectonophysics 9(5):475–486. https://doi.org/10.1016/0040-1951(70)90059-4
Cornet FH, Jianmin, Y (1995) Analysis of induced seismicity for stress field determination and pore pressure mapping. In Mechanics Problems in Geodynamics Part I (pp. 677–700). Birkhäuser Basel.
Cornet FH (2016) Seismic and aseismic motions generated by fluid injections. Geomech Energy Env 5:42–54. https://doi.org/10.1016/j.gete.2015.12.003
Cox SF (2010) The application of failure mode diagrams for exploring the roles of fluid pressure and stress states in controlling styles of fracture-controlled permeability enhancement in faults and shear zones. Geofluids 1–2:217–233. https://doi.org/10.1111/j.1468-8123.2010.00281.x
Elders WA, Shnell J, Friðleifsson GÓ, Albertsson A, Zierenberg RA (2018) Improving geothermal economics by utilizing supercritical and superhot systems to produce flexible and integrated combinations of electricity, hydrogen, and minerals. GRC Trans 42
Evans KF, Genter A, Sausse J (2005) Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations. J Geophys Res Solid Earth 110(B4). https://doi.org/10.1029/2004JB003168
Ghassemi A (2012) A review of some rock mechanics issues in geothermal reservoir development. Geotech Geol Eng 30(3):647–664. https://doi.org/10.1007/s10706-012-9508-3
Goto R, Watanabe N, Sakaguchi K, Miura T, Chen Y, Ishibashi T, Pramudyo E, Parisio F, Yoshioka K, Nakamura K, Komai T, Tsuchiya N (2021) Creating cloud-fracture network by flow-induced microfracturing in superhot geothermal environments. Rock Mech Rock Eng 54(6):2959–2974. https://doi.org/10.1007/s00603-021-02416-z
Goto R, Sakaguchi K, Parisio F, Yoshioka K, Pramudyo E, Watanabe N (2022) Wellbore stability in high-temperature granite under true triaxial stress. Geothermics 100:102334. https://doi.org/10.1016/j.geothermics.2021.102334
Griffith AA (1924) Theory of rupture. (J Waltman, delft). In: Biezeno, CB, Brgers JM (Eds.). In: Proceedings of the First International Congress on Applied Mechanics: 55–63
Hirose T, Mizoguchi K, Shimamoto T (2012) Wear processes in rocks at slow to high slip rates. J Struct Geol 38:102–116. https://doi.org/10.1016/j.jsg.2011.12.007
Hu L, Ghassemi A (2020) Heat production from lab-scale enhanced geothermal systems in granite and gabbro. Int J Rock Mech Min Sci 126:104205. https://doi.org/10.1016/j.ijrmms.2019.104205
Huang K, Cheng Q, Ghassemi A, Bauer S (2019) Investigation of shear slip in hot fractured rock. Int J Rock Mech Min Sci 120:68–81. https://doi.org/10.1016/j.ijrmms.2019.05.006
Ishibashi T, Watanabe N, Asanuma H, Tsuchiya N (2016) Linking microearthquakes to fracture permeability change: the role of surface roughness. Geophys Res Lett 43(14):7486–7493. https://doi.org/10.1002/2016GL069478
Jaeger JC, Cook NGW (1979) Fundamental of rock mechanics, 3rd edn. Chapman & Hall, London
Lin W, Nakamura T, Takahashi M (2003) Anisotropy of thermal property, ultrasonic wave velocity, strength property and deformability in Inada granite. J Jpn Soc Eng Geol 44(3):175–187. https://doi.org/10.5110/jjseg.44.175
Lu SM (2018) A global review of enhanced geothermal system (EGS). Renew Sustain Energy Rev 81:2902–2921. https://doi.org/10.1016/j.rser.2017.06.097
Mitchell EK, Fialko Y, Brown KM (2013) Temperature dependence of frictional healing of Westerly granite: experimental observations and numerical simulations. Geochem Geophys Geosyst 14(3):567–582. https://doi.org/10.1029/2012GC004241
Nemoto K, Moriya H, Niitsuma H, Tsuchiya N (2008) Mechanical and hydraulic coupling of injection-induced slip along pre-existing fractures. Geothermics 37(2):157–172. https://doi.org/10.1016/j.geothermics.2007.11.001
Ohnaka M (1975) Frictional characteristics of typical rocks. J Phys Earth 23(1):87–112. https://doi.org/10.4294/jpe1952.23.87
Parisio F, Vilarrasa V (2020) Sinking CO2 in supercritical reservoirs. Geophys Res Lett. https://doi.org/10.1029/2020GL090456
Parisio F, Yoshioka K, Sakaguchi K, Goto R, Miura T, Pramudyo E, Ishibashi T, Watanabe N (2021) A laboratory study of hydraulic fracturing at the brittle-ductile transition. Sci Rep 11(1):1–16. https://doi.org/10.1038/s41598-021-01388-y
Pine RJ, Batchelor AS (1984) Downward migration of shearing in jointed rock during hydraulic injections. Int J Rock Mech Min Sci Geomech Abstr 21(5):249–263. https://doi.org/10.1016/0148-9062(84)92681-0
Pramudyo E, Goto R, Watanabe N, Sakaguchi K, Nakamura K, Komai T (2021) CO2 injection-induced complex cloud-fracture networks in granite at conventional and superhot geothermal conditions. Geothermics. https://doi.org/10.1016/j.geothermics.2021.102265
Pruess K (2006) Enhanced geothermal systems (EGS) using CO2 as working fluid—a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics 35(4):351–367. https://doi.org/10.1016/j.geothermics.2006.08.002
Randolph JB, Saar MO (2011) Combining geothermal energy capture with geologic carbon dioxide sequestration. Geophys Res Lett. https://doi.org/10.1029/2011GL047265
Rinaldi AP, Rutqvist J, Sonnenthal EL, Cladouhos TT (2015) Coupled THM modeling of hydroshearing stimulation in tight fractured volcanic rock. Trans Porous Media 108(1):131–150. https://doi.org/10.1007/s11242-014-0296-5
Rutqvist J, Rinaldi AP (2019) Fault reactivation and seismicity associated with geologic carbon storage, shale-gas fracturing and geothermal stimulation-observations from recent modeling studies. In: Rock Mechanics for Natural Resources and Infrastructure Development (pp. 3390–3397). CRC Press
Tester JW, Anderson BJ, Batchelor AS, Blackwell DD, DiPippo R, Drake EM, Garnish J, Livesay B, Moore MC, Nichols K, Petty S, Toksöz MN, Veatch Jr. RW (2006) The future of geothermal energy impact of enhanced geothermal system (EGS) on the United States in the 21st Century. Massachusetts Institute of Technology.
Wallroth T, Eliasson T, Sundquist U (1999) Hot dry rock research experiments at Fjällbacka, Sweden. Geothermics 28(4–5):617–625. https://doi.org/10.1016/S0375-6505(99)00032-2
Watanabe N, Numakura T, Sakaguchi K, Saishu H, Okamoto A, Ingebritsen SE, Tsuchiya N (2017a) Potentially exploitable supercritical geothermal resources in the ductile crust. Nat Geosci 10(2):140–144. https://doi.org/10.1038/ngeo2879
Watanabe N, Egawa M, Sakaguchi K, Ishibashi T, Tsuchiya N (2017b) Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions. Geophys Res Lett 44(11):5468–5475. https://doi.org/10.1002/2017GL073898
Watanabe N, Sakaguchi K, Goto R, Miura T, Yamane K, Ishibashi T, Chen Y, Komai T, Tsuchiya N (2019) Cloud-fracture networks as a means of accessing superhot geothermal energy. Sci Rep 9(1):939. https://doi.org/10.1038/s41598-018-37634-z
Watanabe N, Saito K, Okamoto A, Nakamura K, Ishibashi T, Saishu H, Komai T, Tsuchiya N (2020) Stabilizing and enhancing permeability for sustainable and profitable energy extraction from superhot geothermal environments. Appl Energy 260:114306. https://doi.org/10.1016/j.apenergy.2019.114306
Watanabe N, Abe H, Okamoto A, Nakamura K, Komai T (2021a) Formation of amorphous silica nanoparticles and its impact on permeability of fractured granite in superhot geothermal environments. Sci Rep 11(1):5340. https://doi.org/10.1038/s41598-021-84744-2
Watanabe N, Takahashi K, Takahashi R, Nakamura K, Kumano Y, Akaku K, Tamagawa T, Komai T (2021b) Novel chemical stimulation for geothermal reservoirs by chelating agent driven selective mineral dissolution in fractured rocks. Sci Rep 11(1):19994. https://doi.org/10.1038/s41598-021-99511-6
Wilkins R, Menefee AH, Clarens AF (2016) Environmental life cycle analysis of water and CO2-based fracturing fluids used in unconventional gas production. Environ Sci Technol 50(23):13134–13141. https://doi.org/10.1021/acs.est.6b02913
Yamaguchi U (1970) The number of test-pieces required to determine the strength of rock. Int J Rock Mech Min Sci Geomech Abstr 7(2):209–227. https://doi.org/10.1016/0148-9062(70)90013-6
Ye Z, Ghassemi A (2018) Injection-induced shear slip and permeability enhancement in granite fractures. J Geophys Res Solid Earth 123(10):9009–9032. https://doi.org/10.1029/2018JB016045
Ye Z, Ghassemi A (2019) Injection-induced propagation and coalescence of preexisting fractures in granite under triaxial stress. J Geophys Res Solid Earth 124(8):7806–7821. https://doi.org/10.1029/2019JB017400