CO2 Conversion via Low-Temperature RWGS Enabled by Multicomponent Catalysts: Could Transition Metals Outperform Pt?

G. Torres-Sempere1, J. González-Arias1, A. Penkova1, J. L. Santos-Muñoz1, L. F. Bobadilla1, J. A. Odriozola1, L. Pastor-Pérez1, T. R. Reina1
1Inorganic Chemistry Department and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain

Tóm tắt

In the context of CO2 valorisation, the reverse water–gas shift reaction (RWGS) is gathering momentum since it represents a direct route for CO2 reduction to CO. The endothermic nature of the reaction posses a challenge when it comes to process energy demand making necessary the design of effective low-temperature RWGS catalysts. Herein, multicomponent Cs-promoted Cu, Ni and Pt catalysts supported on TiO2 have been studied in the low-temperature RWGS. Cs resulted an efficient promoter affecting the redox properties of the different catalysts and favouring a strong metal-support interaction effect thus modulating the catalytic behaviour of the different systems. Positive impact of Cs is shown over the different catalysts and overall, it greatly benefits CO selectivity. For instance, Cs incorporation over Ni/TiO2 catalysts increased CO selectivity from 0 to almost 50%. Pt-based catalysts present the best activity/selectivity balance although CuCs/TiO2 catalyst present comparable catalytic activity to Pt-studied systems reaching commendable activity and CO selectivity levels, being an economically appealing alternative for this process.

Từ khóa


Tài liệu tham khảo

Chávez-Rocha R, Mercado-Sánchez I, Vargas-Rodriguez I et al (2023) Modeling adsorption of CO2 in rutile metallic oxide surfaces: implications in CO2 catalysis. Molecules. https://doi.org/10.3390/molecules28041776 Zhang R, Hu D, Zhou Y et al (2023) Tuning ionic liquid-based catalysts for CO2 conversion into quinazoline-2,4(1H,3H)-diones. Molecules. https://doi.org/10.3390/molecules28031024 Mikkelsen M, Jørgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3:43–81. https://doi.org/10.1039/b912904a Mihet M, Dan M, Lazar MD (2022) CO2 hydrogenation catalyzed by graphene-based materials. Molecules. https://doi.org/10.3390/molecules27113367 Su X, Yang X, Zhao B, Huang Y (2017) Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions. J Energy Chem. https://doi.org/10.1016/j.jechem.2017.07.006 Chen Z, Liang L, Yuan H et al (2021) Reciprocal regulation between support defects and strong metal-support interactions for highly efficient reverse water gas shift reaction over Pt/TiO2 nanosheets catalysts. Appl Catal B. https://doi.org/10.1016/j.apcatb.2021.120507 Kharaji AG, Shariati A, Takassi MA (2013) A novel γ-alumina supported fe-mo bimetallic catalyst for reverse water gas shift reaction. Chin J Chem Eng. https://doi.org/10.1016/S1004-9541(13)60573-X Daza YA, Kuhn JN (2016) CO2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO2 conversion to liquid fuels. RSC Adv. https://doi.org/10.1039/c6ra05414e Le Saché E, Pastor-Pérez L, Haycock BJ et al (2020) Switchable catalysts for chemical CO2 recycling: a step forward in the methanation and reverse water-gas shift reactions. ACS Sustain Chem Eng 8(11):4614–4622. https://doi.org/10.1021/acssuschemeng.0c00551 Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci. https://doi.org/10.1039/c3ee00056g Marín-s M, Lobo-andrades L, Azancot L et al (2023) Low-temperature reverse water gas-shift reaction over highly efficient Cu-hydrotalcites: mechanistic insights on the role of malachite phase A. Catal Today. https://doi.org/10.1016/j.cattod.2023.114235 Lim HS, Lee M, Kim Y et al (2021) Low-temperature CO2 hydrogenation to CO on Ni-incorporated LaCoO3 perovskite catalysts. J Hydrogen Energy Int. https://doi.org/10.1016/j.ijhydene.2021.02.085 Rabee AIM, Zhao D, Cisneros S et al (2023) Role of interfacial oxygen vacancies in low-loaded Au-based catalysts for the low-temperature reverse water gas shift reaction. Appl Catal B. https://doi.org/10.1016/j.apcatb.2022.122083 Liu L, Das S, Chen T et al (2020) Low temperature catalytic reverse water-gas shift reaction over perovskite catalysts in DBD plasma. Appl Catal B. https://doi.org/10.1016/j.apcatb.2019.118573 Liu Y, Liu D (1999) Study of bimetallic Cu-Ni/γ-Al2O3 catalysts for carbon dioxide hydrogenation. Int J Hydrogen Energy. https://doi.org/10.1016/S0360-3199(98)00038-X Goguet A, Meunier FC, Tibiletti D et al (2004) Spectrokinetic investigation of reverse water-gas-shift reaction intermediates over a Pt/CeO2 catalyst. J Phys Chem B. https://doi.org/10.1021/jp047242w Kusama H, Bando KK, Okabe K, Arakawa H (2001) CO2 hydrogenation reactivity and structure of Rh/SiO2 catalysts prepared from acetate, chloride and nitrate precursors. Appl Catal A:Gen. https://doi.org/10.1016/S0926-860X(00)00576-7 Kim SS, Lee HH, Hong SC (2012) The effect of the morphological characteristics of TiO2 supports on the reverse water-gas shift reaction over Pt/TiO2 catalysts. Appl Catal B. https://doi.org/10.1016/j.apcatb.2012.02.023 Inoue T, Iizuka T (1986) Hydrogenation of carbon dioxide and carbon monoxide over supported Rhodium catalysts under 10 bar pressure. J Chem Soc Faraday Trans. https://doi.org/10.1039/F19868201681 Pettigrew DJ, Trimm DL, Cant NW (1994) The effects of rare earth oxides on the reverse water-gas shift reaction on palladium/alumina. Catal Lett. https://doi.org/10.1007/BF00806061 Bobadilla LF, Santos JL, Ivanova S et al (2018) Unravelling the role of oxygen vacancies in the mechanism of the reverse water-gas shift reaction by operando DRIFTS and ultraviolet-visible spectroscopy. ACS Catal. https://doi.org/10.1021/acscatal.8b02121 Liu X, Pajares A, CalinaoMatienzo DD et al (2020) Preparation and characterization of bulk MoXC catalysts and their use in the reverse water-gas shift reaction. Catal Today. https://doi.org/10.1016/j.cattod.2019.11.011 Pastor-Pérez L, Baibars F, Le Sache E et al (2017) CO2 valorisation via reverse water-gas shift reaction using advanced Cs doped Fe-Cu/Al2O3 catalysts. J CO2 Util. https://doi.org/10.1016/j.jcou.2017.08.009 Mine S, Yamaguchi T, Ting KW et al (2021) Reverse water-gas shift reaction over Pt/MoOx/TiO2: reverse Mars-van Krevelen mechanismviaredox of supported MoOx. Catal Sci Technol. https://doi.org/10.1039/d1cy00289a Yang X, Su X, Chen X et al (2017) Promotion effects of potassium on the activity and selectivity of Pt/zeolite catalysts for reverse water gas shift reaction. Appl Catal B. https://doi.org/10.1016/j.apcatb.2017.05.067 Zhou R, Rui N, Fan Z, Liu C-J (2016) Effect of the structure of Ni/TiO2 catalyst on CO2 methanation. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2016.08.093 Kim SS, Park KH, Hong SC (2011) A study on HCHO oxidation characteristics at room temperature using a Pt/TiO2 catalyst. Appl Catal A. https://doi.org/10.1016/j.apcata.2011.03.018 Fernandes Machado NRC, Santana VS (2005) Influence of thermal treatment on the structure and photocatalytic activity of TiO2 P25. Catal Today. https://doi.org/10.1016/j.cattod.2005.07.022 Krýsa J, Keppert M, Štengl V, Šubrt J (2004) The effect of thermal treatment on the properties of TiO2 photocatalyst. Matter Chem Phys. https://doi.org/10.1016/j.matchemphys.2004.03.021 Di L, Xu Z, Wang K, Zhang X (2013) A facile method for preparing Pt/TiO2 photocatalyst with enhanced activity using dielectric barrier discharge. Catal Today. https://doi.org/10.1016/j.cattod.2013.03.025 Zhang S, Wang J, Wang X (2008) Effect of calcination temperature on structure and performance of Ni/TiO2-SiO2 catalyst for CO2 reforming of methane. J Nat Gas Chem. https://doi.org/10.1016/S1003-9953(08)60048-1 Chen I, Chen FL (1990) Effect of alkali and alkaline-earth metals on the resistivity to coke formation and sintering of nickel-alumina catalysts. Chi J Chem Eng 29:534–539 Petrik IS, Krylova GV, Kelyp OO et al (2015) XPS and TPR study of sol-gel derived M/TiO2 powders (M=Co, Cu, Mn, Ni). Him Fiz Tehnol Poverhni. https://doi.org/10.15407/hftp06.02.179 Peng J, Wang S (2007) Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures. Appl Catal B. https://doi.org/10.1016/j.apcatb.2006.12.012 Zhao D, Lü D, Zang Y, Zhao X (1997) Spillover in heterogeneous catalysis. Prog Chem 9:759–788 Liang H, Zhang Y, Liu Y (2008) Three-dimensionally ordered macro-porous Pt/TiO2 catalyst used for water-gas shift reaction. J Nat Gas Chem. https://doi.org/10.1016/S1003-9953(09)60017-7 Torres-Sempere G, Blay-Roger R, Luque-Álvarez LA et al (2023) Subnanometric Pt clusters dispersed over Cs-doped TiO2 for CO2 upgrading via low-temperature RWGS: operando mechanistic insights to guide an optimal catalyst design. J Mater Chem A. https://doi.org/10.1039/d3ta05482a Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2000) NIST X-ray photoelectron spectroscopy database. NIST Standard Reference Database Yang L, Pastor-Pérez L, Villora-Pico JJ et al (2021) Highly active and selective multicomponent Fe-Cu/CeO2-Al2O3 catalysts for CO2 upgrading via RWGS: impact of Fe/Cu ratio. ACS Sustain Chem Eng. https://doi.org/10.1021/acssuschemeng.1c03551 Lan L, Daly H, Jiao Y et al (2021) ScienceDirect comparative study of the effect of TiO 2 support composition and Pt loading on the performance of Pt/TiO2 photocatalysts for catalytic photoreforming of cellulose. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2021.06.043 Li L, Zeng W, Song M et al (2022) Research progress and reaction mechanism of CO2 methanation over Ni-based catalysts at low temperature: a review. Catalysts. https://doi.org/10.3390/catal12020244 Zhang Q, Pastor-Pérez L, Jin W et al (2019) Understanding the promoter effect of Cu and Cs over highly effective Β-Mo2C catalysts for the reverse water-gas shift reaction. Appl Catal B. https://doi.org/10.1016/j.apcatb.2018.12.023 Liu C, Nauert SL, Alsina MA et al (2019) Role of surface reconstruction on Cu/TiO2 nanotubes for CO2 conversion. Appl Catal B. https://doi.org/10.1016/j.apcatb.2019.117754 Zhang C, Wang L, Etim UJ et al (2022) Oxygen vacancies in Cu/TiO2 boost strong metal-support interaction and CO2 hydrogenation to methanol. J Catal. https://doi.org/10.1016/j.jcat.2022.06.026 Dai B, Zhou G, Ge S et al (2017) CO2 reverse water-gas shift reaction on mesoporous M-CeO2 catalysts. Can J Chem Eng. https://doi.org/10.1002/cjce.22730 Kharaji AG, Shariati A, Ostadi M (2014) Development of Ni-Mo/Al2O3 catalyst for reverse water gas shift (RWGS) reaction. J Nanosci Nanotechnol. https://doi.org/10.1166/jnn.2014.8962 Chen X, Su X, Duan H et al (2017) Catalytic performance of the Pt/TiO2 catalysts in reverse water gas shift reaction: controlled product selectivity and a mechanism study. Catal Today. https://doi.org/10.1016/j.cattod.2016.03.020 Zhu X, Qu X, Li X et al (2016) Selective reduction of carbon dioxide to carbon monoxide over Au/CeO2 catalyst and identification of reaction intermediate. J Catal. https://doi.org/10.1016/S1872-2067(16)62538-X Zhang X, Zhu X, Lin L et al (2017) Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction. ACS Catal. https://doi.org/10.1021/acscatal.6b02991 Liang B, Duan H, Su X et al (2017) Promoting role of potassium in the reverse water gas shift reaction on Pt/mullite catalyst. Catal Today. https://doi.org/10.1016/j.cattod.2016.02.051