CO2/CH4 mixed gas separation using graphene oxide nanosheets embedded hollow fiber membranes: Evaluating effect of filler concentration on performance
Tài liệu tham khảo
Khan, 2017, Biogas as a renewable energy fuel – a review of biogas upgrading, utilisation and storage, Energy Convers. Manag., 150, 277, 10.1016/j.enconman.2017.08.035
Mubashir, 2018, Issues and current trends of hollow-fiber mixed-matrix membranes for CO2 separation from N2 and CH4, Chem. Eng. Technol., 41, 235, 10.1002/ceat.201700327
Cheng, 2018, Mixed matrix membranes for natural gas upgrading: current status and opportunities, Ind. Eng. Chem. Res., 57, 4139, 10.1021/acs.iecr.7b04796
Van der Bruggen, 2017, Membrane technology
Mazinani, 2018, A ground breaking polymer blend for CO2/N2 separation, J. CO2 Util., 27, 536, 10.1016/j.jcou.2018.08.024
Ismail, 2009, Transport and separation properties of carbon nanotube-mixed matrix membrane, Sep. Purif. Technol., 70, 12, 10.1016/j.seppur.2009.09.002
Park, 2017, Maximizing the right stuff: the trade-off between membrane permeability and selectivity, Science, 356, eaab0530, 10.1126/science.aab0530
Lanč, 2018, Synthesis, preparation and characterization of novel hyperbranched 6FDA-TTM based polyimide membranes for effective CO2 separation: effect of embedded mesoporous silica particles and siloxane linkages, Polymer, 144, 33, 10.1016/j.polymer.2018.04.033
Modi, 2018, Carboxylated carbon nanotubes/polyethersulfone hollow fiber mixed matrix membranes: development and characterization for enhanced gas separation performance, MRS Adv., 3, 3103, 10.1557/adv.2018.411
Karakiliç, 2019, Defect-free high-silica CHA zeolite membranes with high selectivity for light gas separation, J. Membr. Sci., 586, 34, 10.1016/j.memsci.2019.05.047
Zou, 2017, Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal, ACS Appl. Mater. Interfaces, 9, 29093, 10.1021/acsami.7b08032
Zhang, 2018, Mixed membranes comprising carboxymethyl cellulose (as capping agent and gas barrier matrix) and nanoporous ZIF-L nanosheets for gas separation applications, Polymers, 10, 1340, 10.3390/polym10121340
Zahri, 2016, Graphene oxide/polysulfone hollow fiber mixed matrix membranes for gas separation, RSC Adv., 6, 89130, 10.1039/C6RA16820E
Shen, 2016, Size effects of graphene oxide on mixed matrix membranes for CO2 separation, AlChE J., 62, 2843, 10.1002/aic.15260
Zhang, 2019, Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation, J. Membr. Sci., 570-571, 343, 10.1016/j.memsci.2018.10.075
Wong, 2017, Highly permeable and selective graphene oxide-enabled thin film nanocomposite for carbon dioxide separation, Int. J. Greenh. Gas Con., 64, 257, 10.1016/j.ijggc.2017.08.005
Feijani, 2018, Effective gas separation through graphene oxide containing mixed matrix membranes, J. Appl. Polym. Sci., 135, 46271, 10.1002/app.46271
Xin, 2015, Enhancing the CO2 separation performance of composite membranes by the incorporation of amino acid-functionalized graphene oxide, J. Mater. Chem. A, 3, 6629, 10.1039/C5TA00506J
Li, 2015, Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes, ACS Appl. Mater. Interfaces, 7, 5528, 10.1021/acsami.5b00106
Syed Ibrahim, 2020, One-step synthesis of zwitterionic graphene oxide nanohybrid: application to polysulfone tight ultrafiltration hollow fiber membrane, Sci. Rep., 10, 6880, 10.1038/s41598-020-63356-2
Chi, 2016, Facile preparation of graphene oxide membranes for gas separation, Chem. Mater., 28, 2921, 10.1021/acs.chemmater.5b04475
Chen, 2018, Graphene oxide nanosheets to improve permeability and selectivity of PIM-1 membrane for carbon dioxide separation, J. Ind. Eng. Chem., 63, 296, 10.1016/j.jiec.2018.02.030
Chiang, 2017, Surface modifications of carbonaceous materials for carbon dioxide adsorption: a review, J. Taiwan Inst. Chem. Eng., 71, 214, 10.1016/j.jtice.2016.12.014
Karunakaran, 2015, CO2-selective PEO–PBT (PolyActive™)/graphene oxide composite membranes, Chem. Commun., 51, 14187, 10.1039/C5CC04999G
Shen, 2015, Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture, Angew. Chem., 127, 588, 10.1002/ange.201409563
Ebrahimi, 2016, PVA/PES-amine-functional graphene oxide mixed matrix membranes for CO2/CH4 separation: experimental and modeling, Chem. Eng. Res. Des., 109, 647, 10.1016/j.cherd.2016.03.009
Modi, 2017, Graphene oxide nanosheets and d-α-Tocopheryl polyethylene glycol 1000 succinate (TPGS) doping improves biocompatibility and ultrafiltration in polyethersulfone hollow fiber membranes, J. Colloid Interface Sci., 504, 86, 10.1016/j.jcis.2017.05.035
Modi, 2018, Graphene oxide-doping improves the biocompatibility and separation performance of polyethersulfone hollow fiber membranes for bioartificial kidney application, J. Colloid Interface Sci., 514, 750, 10.1016/j.jcis.2017.12.044
Tahir, 2019, SO3H functionalized UiO-66 nanocrystals in polysulfone based mixed matrix membranes: synthesis and application for efficient CO2 capture, Sep. Purif. Technol., 224, 524, 10.1016/j.seppur.2019.05.060
Roslan, 2020, Improving CO2/CH4 and O2/N2 separation by using surface-modified polysulfone hollow fiber membranes, J. Polym. Res., 27, 119, 10.1007/s10965-020-02104-6
Kárászová, 2020, Post-combustion carbon capture by membrane separation: review, Sep. Purif. Technol., 238, 10.1016/j.seppur.2019.116448
Sainath, 2020, In-situ growth of zeolitic imidazolate framework-67 nanoparticles on polysulfone/graphene oxide hollow fiber membranes enhance CO2/CH4 separation, J. Membr. Sci., 614, 10.1016/j.memsci.2020.118506
Ionita, 2015, Synthesis, characterization and in vitro studies of polysulfone/graphene oxide composite membranes, Compos. B Eng., 72, 108, 10.1016/j.compositesb.2014.11.040
Bera, 2018, Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry, J. Nanosci. Nanotechnol., 18, 902, 10.1166/jnn.2018.14306
Zambare, 2020, Effect of oxidation degree of GO nanosheets on microstructure and performance of polysulfone-GO mixed matrix membranes, Sep. Purif. Technol., 244, 10.1016/j.seppur.2020.116865
Lin, 2020, Cross-linked GO membranes assembled with GO nanosheets of differently sized lateral dimensions for organic dye and chromium separation, J. Membr. Sci., 598, 10.1016/j.memsci.2019.117789
Meng, 2016, The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes, J. Membr. Sci., 501, 169, 10.1016/j.memsci.2015.12.004
Lai, 2019, A novel interfacial polymerization approach towards synthesis of graphene oxide-incorporated thin film nanocomposite membrane with improved surface properties, Arab. J. Chem., 12, 75, 10.1016/j.arabjc.2017.12.009
Chen, 2013, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 64, 225, 10.1016/j.carbon.2013.07.055
Kumari, 2020, Enhanced flux and antifouling property on municipal wastewater of polyethersulfone hollow fiber membranes by embedding carboxylated multi-walled carbon nanotubes and a vitamin E derivative, Sep. Purif. Technol., 235, 10.1016/j.seppur.2019.116199
Ionita, 2014, Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide, Compos. B Eng., 59, 133, 10.1016/j.compositesb.2013.11.018
Modi, 2019, Efficiently improved oil/water separation using high flux and superior antifouling polysulfone hollow fiber membranes modified with functionalized carbon nanotubes/graphene oxide nanohybrid, J. Environ. Chem. Eng., 7, 10.1016/j.jece.2019.102944
Nwakaudu, 2019, Thermomechanical and antioxidative properties of monodora myristica infused polysulfone active film package, J. Polym. Biopolym. Phys. Chem., 7, 10
Modi, 2020, Efficient removal of 2, 4-dichlorophenol from contaminated water and alleviation of membrane fouling by high flux polysulfone-iron oxide/graphene oxide composite hollow fiber membranes, J. Water Process. Eng., 33, 10.1016/j.jwpe.2019.101113
Swain, 2019, Gas permeation and selectivity characteristics of PSf based nanocomposite membranes, Polymer, 180, 10.1016/j.polymer.2019.121692
Kang, 2018, Novel sulfonated graphene oxide incorporated polysulfone nanocomposite membranes for enhanced-performance in ultrafiltration process, Chemosphere, 207, 581, 10.1016/j.chemosphere.2018.05.141
Vatanpour, 2015, Fabrication and characterization of anti-fouling and anti-bacterial Ag-loaded graphene oxide/polyethersulfone mixed matrix membrane, J. Ind. Eng. Chem., 30, 342, 10.1016/j.jiec.2015.06.004
Jamil, 2019, Mixed matrix membranes incorporated with reduced graphene oxide (rGO) and zeolitic imidazole framework-8 (ZIF-8) nanofillers for gas separation, J. Solid State Chem., 270, 419, 10.1016/j.jssc.2018.11.028
Leaper, 2018, Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation, J. Membr. Sci., 554, 309, 10.1016/j.memsci.2018.03.013
Shahrin, 2019, Adsorptive mixed matrix membrane incorporating graphene oxide-manganese ferrite (GMF) hybrid nanomaterial for efficient As(V) ions removal, Compos. B Eng., 175, 10.1016/j.compositesb.2019.107150
Liu, 2016, Covalently functionalized graphene oxide and quaternized polysulfone nanocomposite membranes for fuel cells, RSC Adv., 6, 71305, 10.1039/C6RA12822J
Zhang, 2019, Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation, J. Membr. Sci., 570, 343, 10.1016/j.memsci.2018.10.075
Md. Nordin, 2015, Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation, RSC Adv., 5, 30206, 10.1039/C5RA00567A
Anastasiou, 2018, Metal-organic framework/graphene oxide composite fillers in mixed-matrix membranes for CO2 separation, Mater. Chem. Phys., 212, 513, 10.1016/j.matchemphys.2018.03.064
Raouf, 2020, A favored CO2 separation over light gases using mixed matrix membrane comprising polysulfone/polyethylene glycol and graphene hydroxyl nanoparticles, Process Saf. Environ. Protect., 133, 394, 10.1016/j.psep.2019.11.002
Guo, 2015, Mixed matrix membranes incorporated with amine-functionalized titanium-based metal-organic framework for CO2/CH4 separation, J. Membr. Sci., 478, 130, 10.1016/j.memsci.2015.01.007
Aroon, 2010, Performance studies of mixed matrix membranes for gas separation: a review, Sep. Purif. Technol., 75, 229, 10.1016/j.seppur.2010.08.023
Berean, 2015, Enhanced gas permeation through graphene nanocomposites, J. Phys. Chem. C, 119, 13700, 10.1021/acs.jpcc.5b02995
Koros, 1980, Model for sorption of mixed gases in glassy polymers, J. Polym. Sci. Pt. B-Polym. Phys., 18, 981, 10.1002/pol.1980.180180506
Saberi, 2016, Modeling of simultaneous competitive mixed gas permeation and CO2 induced plasticization in glassy polymers, J. Membr. Sci., 499, 164, 10.1016/j.memsci.2015.09.044
Zito, 2020, Selective mass transport of CO2 containing mixtures through zeolite membranes, J. Membr. Sci. Res.
Norahim, 2019, Composite membranes of graphene oxide for CO2/CH4 separation, J. Chem. Technol. Biotechnol., 94, 2783, 10.1002/jctb.5999
Shen, 2017, Highly efficient recovery of propane by mixed-matrix membrane via embedding functionalized graphene oxide nanosheets into polydimethylsiloxane, AlChE J., 63, 3501, 10.1002/aic.15720
Heck, 2017, Block copolyimide membranes for pure- and mixed-gas separation, Sep. Purif. Technol., 173, 183, 10.1016/j.seppur.2016.09.024
Saqib, 2020, Perylene based novel mixed matrix membranes with enhanced selective pure and mixed gases (CO2, CH4, and N2) separation, J. Nat. Gas Sci. Eng., 73, 10.1016/j.jngse.2019.103072
Ismail, 1999, Production of super selective polysulfone hollow fiber membranes for gas separation, Polymer, 40, 6499, 10.1016/S0032-3861(98)00862-3
Kheirtalab, 2020, A novel ternary mixed matrix membrane comprising polyvinyl alcohol (PVA)-modified poly (ether-block-amide)(Pebax®1657)/graphene oxide nanoparticles for CO2 separation, Process Saf. Environ. Protect., 144, 208, 10.1016/j.psep.2020.07.027
Li, 2018, Enhancing CO2/CH4 separation performance and mechanical strength of mixed-matrix membrane via combined use of graphene oxide and ZIF-8, J. Ind. Eng. Chem., 67, 156, 10.1016/j.jiec.2018.06.026