CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions

Energy and Environmental Science - Tập 12 Số 5 - Trang 1442-1453
Thomas Burdyny1,2,3,4,5, Wilson A. Smith1,2,3,4,5
12629 HZ Delft
2Delft University of Technology
3Department of Chemical Engineering
4Materials for Energy Conversion and Storage, Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
5The Netherlands

Tóm tắt

The substantial implications of high current densities on the local reaction environment and design of catalysts for electrochemical CO2 reduction are addressed. The presented perspectives also reflect on current practices within the field and offer new opportunities for both future catalyst and system-focused research efforts.

Từ khóa


Tài liệu tham khảo

Jouny, 2018, Ind. Eng. Chem. Res., 57, 2165, 10.1021/acs.iecr.7b03514

Li, 2016, ACS Energy Lett., 1, 1149, 10.1021/acsenergylett.6b00475

“Molly” Jhong, 2013, Adv. Energy Mater., 3, 589, 10.1002/aenm.201200759

Li, 2017, ACS Cent. Sci., 3, 778, 10.1021/acscentsci.7b00207

Salvatore, 2018, ACS Energy Lett., 3, 149, 10.1021/acsenergylett.7b01017

Haas, 2018, Nat. Catal., 1, 32, 10.1038/s41929-017-0005-1

Verma, 2016, ChemSusChem, 9, 1972, 10.1002/cssc.201600394

Spurgeon, 2018, Energy Environ. Sci., 11, 1536, 10.1039/C8EE00097B

Jiang, 2018, Energy Environ. Sci., 11, 893, 10.1039/C7EE03245E

Zhang, 2018, Adv. Sci., 5, 1700275, 10.1002/advs.201700275

Li, 2017, Angew. Chem., Int. Ed., 56, 505, 10.1002/anie.201608279

Weekes, 2018, Acc. Chem. Res., 51, 910, 10.1021/acs.accounts.8b00010

Endrődi, 2017, Prog. Energy Combust. Sci., 62, 133, 10.1016/j.pecs.2017.05.005

Kim, 2014, Nat. Commun., 5, 4948, 10.1038/ncomms5948

Liu, 2017, Nat. Commun., 8, 15438, 10.1038/ncomms15438

Mistry, 2014, J. Am. Chem. Soc., 136, 16473, 10.1021/ja508879j

Reske, 2014, J. Am. Chem. Soc., 136, 6978, 10.1021/ja500328k

Zhu, 2014, J. Am. Chem. Soc., 136, 16132, 10.1021/ja5095099

Zhu, 2013, J. Am. Chem. Soc., 135, 16833, 10.1021/ja409445p

Liu, 2018, Nano Energy, 45, 456, 10.1016/j.nanoen.2018.01.016

Sen, 2014, ACS Catal., 4, 3091, 10.1021/cs500522g

Loiudice, 2016, Angew. Chem., Int. Ed., 55, 5789, 10.1002/anie.201601582

Hall, 2015, J. Am. Chem. Soc., 137, 14834, 10.1021/jacs.5b08259

Min, 2015, J. Am. Chem. Soc., 137, 4701, 10.1021/ja511890h

Cave, 2018, ACS Catal., 3035, 10.1021/acscatal.7b03807

Khezri, 2017, J. Mater. Chem. A, 5, 8230, 10.1039/C6TA09875D

Duan, 2017, Adv. Mater., 29, 1701784, 10.1002/adma.201701784

Wu, 2017, Adv. Sci., 4, 1700194, 10.1002/advs.201700194

He, 2017, ChemSusChem, 11, 48, 10.1002/cssc.201701825

Li, 2018, Nanoscale, 10, 6235, 10.1039/C7NR09620H

Schouten, 2014, J. Electroanal. Chem., 716, 53, 10.1016/j.jelechem.2013.08.033

Pang, 2017, Green Chem., 19, 4023, 10.1039/C7GC01677H

Pander, 2017, ChemElectroChem, 5, 219, 10.1002/celc.201701100

Zhang, 2018, Phys. Chem. Chem. Phys., 20, 5936, 10.1039/C7CP07723H

Lim, 2017, Electrochim. Acta, 238, 56, 10.1016/j.electacta.2017.04.017

Kas, 2015, ChemElectroChem, 2, 354, 10.1002/celc.201402373

Varela, 2016, Catal. Today, 260, 8, 10.1016/j.cattod.2015.06.009

Resasco, 2017, J. Am. Chem. Soc., 139, 11277, 10.1021/jacs.7b06765

Ayemoba, 2017, ACS Appl. Mater. Interfaces, 9, 27377, 10.1021/acsami.7b07351

Pérez-Gallent, 2017, J. Am. Chem. Soc., 139, 16412, 10.1021/jacs.7b10142

Singh, 2016, J. Am. Chem. Soc., 138, 13006, 10.1021/jacs.6b07612

Ooka, 2017, Langmuir, 33, 9307, 10.1021/acs.langmuir.7b00696

Goodpaster, 2016, J. Phys. Chem. Lett., 7, 1471, 10.1021/acs.jpclett.6b00358

Singh, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, E8812, 10.1073/pnas.1713164114

Gupta, 2006, J. Appl. Electrochem., 36, 161, 10.1007/s10800-005-9058-y

Singh, 2015, Phys. Chem. Chem. Phys., 17, 18924, 10.1039/C5CP03283K

Cheng, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 1795, 10.1073/pnas.1612106114

Montoya, 2015, J. Phys. Chem. Lett., 6, 2032, 10.1021/acs.jpclett.5b00722

Ma, 2016, Angew. Chem., Int. Ed., 55, 9748, 10.1002/anie.201604654

Kim, 2017, Proc. Natl. Acad. Sci. U. S. A., 114, 10560, 10.1073/pnas.1711493114

Luna, 2018, Nat. Catal., 1, 103, 10.1038/s41929-017-0018-9

Mistry, 2016, Nat. Commun., 7, 12123, 10.1038/ncomms12123

Handoko, 2016, J. Phys. Chem. C, 120, 20058, 10.1021/acs.jpcc.6b07128

Ren, 2015, ACS Catal., 5, 2814, 10.1021/cs502128q

Lum, 2017, J. Phys. Chem. C, 121, 14191, 10.1021/acs.jpcc.7b03673

Kortlever, 2015, J. Phys. Chem. Lett., 6, 4073, 10.1021/acs.jpclett.5b01559

Burdyny, 2017, ACS Sustainable Chem. Eng., 5, 4031, 10.1021/acssuschemeng.7b00023

Gabardo, 2018, Energy Environ. Sci., 11, 2531, 10.1039/C8EE01684D

Seifitokaldani, 2018, J. Am. Chem. Soc., 140, 3833, 10.1021/jacs.7b13542

Weng, 2018, Phys. Chem. Chem. Phys., 20, 16973, 10.1039/C8CP01319E

Dinh, 2018, ACS Energy Lett., 3, 2835, 10.1021/acsenergylett.8b01734

Cook, 1990, J. Electrochem. Soc., 137, 607, 10.1149/1.2086515

Yano, 2002, J. Electroanal. Chem., 519, 93, 10.1016/S0022-0728(01)00729-X

Delacourt, 2008, J. Electrochem. Soc., 155, B42, 10.1149/1.2801871

Ma, 2016, J. Mater. Chem. A, 4, 8573, 10.1039/C6TA00427J

Kim, 2016, J. Power Sources, 312, 192, 10.1016/j.jpowsour.2016.02.043

Verma, 2016, Phys. Chem. Chem. Phys., 18, 7075, 10.1039/C5CP05665A

Dufek, 2012, Electrochem. Solid-State Lett., 15, B48, 10.1149/2.010204esl

Hoang, 2017, ACS Catal., 7, 3313, 10.1021/acscatal.6b03613

Dinh, 2018, Science, 360, 783, 10.1126/science.aas9100

Zhuang, 2018, Nat. Catal., 1, 421, 10.1038/s41929-018-0084-7

Irtem, 2016, J. Mater. Chem. A, 4, 13582, 10.1039/C6TA04432H

Lv, 2018, Adv. Mater., 30, 1803111, 10.1002/adma.201803111

Liu, 2016, J. CO2 Util., 15, 50, 10.1016/j.jcou.2016.04.011

Lee, 2018, Angew. Chem., Int. Ed., 57, 6883, 10.1002/anie.201803501

Jeanty, 2018, J. CO2 Util., 24, 454, 10.1016/j.jcou.2018.01.011

Dunwell, 2018, ACS Catal., 8, 8121, 10.1021/acscatal.8b02181

Nonoyama, 2011, J. Electrochem. Soc., 158, B416, 10.1149/1.3546038

Liu, 2016, Nature, 537, 382, 10.1038/nature19060

Sheng, 2013, Energy Environ. Sci., 6, 1509, 10.1039/c3ee00045a

Nørskov, 2005, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988

Zhang, 2014, ACS Catal., 4, 3742, 10.1021/cs5012298

Jiang, 2018, Nat. Catal., 1, 111, 10.1038/s41929-017-0009-x

Ren, 2018, Nat. Commun., 9, 925, 10.1038/s41467-018-03286-w

Kibria, 2018, Adv. Mater., 30, 1804867, 10.1002/adma.201804867

Castillo, 2014, AIChE J., 60, 3557, 10.1002/aic.14544

Ma, 2014, J. Electrochem. Soc., 161, F1124, 10.1149/2.1201410jes

Ma, 2016, J. Power Sources, 301, 219, 10.1016/j.jpowsour.2015.09.124

Li, 2017, J. Am. Chem. Soc., 139, 4290, 10.1021/jacs.7b00261

Zheng, 2017, Joule, 1, 794, 10.1016/j.joule.2017.09.014

Klinkova, 2016, ACS Catal., 6, 8115, 10.1021/acscatal.6b01719

Hashiba, 2017, Sustainable Energy Fuels, 1, 1734, 10.1039/C7SE00352H

Huang, 2017, ACS Catal., 7, 1749, 10.1021/acscatal.6b03147

Hernández, 2017, Green Chem., 19, 2326, 10.1039/C7GC00398F

Varcoe, 2014, Energy Environ. Sci., 7, 3135, 10.1039/C4EE01303D

Kaczur, 2018, Front. Chem., 6, 263, 10.3389/fchem.2018.00263

Hori, 2005, Electrochim. Acta, 50, 5354, 10.1016/j.electacta.2005.03.015

Wuttig, 2015, ACS Catal., 5, 4479, 10.1021/acscatal.5b00808