CO Sensor based on Thin Film of ZnO Nanoparticles

Springer Science and Business Media LLC - Tập 2 - Trang 2695-2700 - 2017
Carlos Aquino López1, Guillermo Carbajal-Franco1, Fernanda Márquez Quintana1, Alejandro Ávila Garcia2
1Division of Graduate Studies and Research, Instituto Tecnológico de Toluca, TecNM-SEP, Metepec, México
2Departamento de Ingeniería Eléctrica, Sección de Electrónica del Estado Sólido, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico

Tóm tắt

In this research, zinc chloride has been used as precursor and zinc oxide nanostructures have been synthesized by Sol-Gel process, using deionized water and 2-propanol as solvents in order to evaluate their influence on the final materials and their properties. Thin films of synthesized samples were deposited on glass substrates by the dipping method. The structure and morphology of crystals were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. The electrical response of the samples to CO was investigated at different operating temperatures and sensitivity curves are presented for samples synthesized in water and 2-propanol (IsOH) solvents. The SEM analysis revealed that ZnO thin films have yielded to different morphologies depending on the solvent, and material was found on the non-immersed side of the substrate attributable to migration during the dip-coating process. XRD analysis shows that the samples present the ZnO wurtzite structure. In EDS analysis it was found the presence of chlorine on the sample, opening the possibility the presence of zinc oxychloride.

Tài liệu tham khảo

M. J. Madou, S.R. Morrison (Eds.), Chemical Sensing with Solid State Devices, Academic Press, New York, 1989. A. Vancu, R. Ionescu, N. Bârsan, in: P. Ciureany, S. Middelhoek (Eds.), Thin Film Resistive Sensors, IOP Publishing Ltd., 1992, p. 437 (Chapter 6). S. Capone, P. Siciliano, Gas sensors from nanostructured metal oxides. Encyclopedy of Nanoscience and Nanotechnology, 2004, 769–804. C. Xu, J. Tamaki, N. Miura, N. Yamazoe, Sens. Actuators B3 (1991) Page 147. N. Yamazoe. Sens and Actuators B. Vol. 5 (1991), 7–19. N. Bârsan, M. Schweizer-Berberich, W. Göpel, Fresenius J. Anal. Chem. 365 (1999) 287. M. Hjiri, L. El Mir, S. G. Leonardi, N. Donato, G. Neri, Nanomaterials Vol.3(3)(2013), 357–369. P. Bhattacharyya, P.K. Basu, H. Saha, S. Basu Sensors and Actuators , 10 June 2007, 62–67. P. P. Sahay Journal of materials science. Vol.40 (2005), 4383 – 4385. L.F. Dong, Z.L. Cui, Z.K. Zhang, Nanostruct. J. Mater. Vol.8 (7) (1997). 815–823. H. Gong, H. J.Q., J.H. Wang, C.H. Ong, F.R. Zhu, Sens. Actuators B 115 (2006) 247–251. K. Soulantica, L. Erades, M. Sauvan, F. Senocq, A. Maisonnat, B. Chaudret, Adv. Funct. J. Mater. 13 (2005), 553–557. Epifani, Comini, Arbiol, Diaz, Sergent, T. Pagnier, Siciliano, Faglia, Morante, Senors and. Actuators B 130 (2008) 483–487. A. C. Jonesa, M. I. Hitchman. Overview of Chemical Vapour Deposition. Thin Film Innovations , chapter 1. Department of Chemistry, University of Liverpool. V. Thakur, U.P. Verma P. Rajaram, Journal of Materials Science: Materials in Electronics. Vol.25(7) (2014), 3242–3250. Marquez, M. Carbajal, G. Pacheco, J. Rev. Simulacion y Laboratorio. Vol. 3(7)(2017). 25–32 C. Josiah, I, Bertha, D. Peacock, American pharmaceutical association. 1918. 689–695. G. Carbajal-Franco, M. Eastman, C.V. Ramana, Ceramics International. Vol. 39 (2013). 4581–4587 A. Mang, K. Reimann, S. Rubenacke Solid State Commun. 1995. 94–251. R. Morrison, Sensors and Actuators Volume 2, (1981–1982), 329–341.