CO 2 separation by supported ionic liquid membranes and prediction of separation performance

International Journal of Greenhouse Gas Control - Tập 53 - Trang 79-84 - 2016
Zhen Liu1, Cheng Liu1, Longfei Li1, Wei Qin1, Airong Xu1
1College of Chemical Engineering & Pharmaceutics, Henan University of Science and Technology, Luoyang, Henan 471023, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aaron, 2005, Separation of CO2 from flue gas: a review, Sep. Sci. Technol., 40, 321, 10.1081/SS-200042244

Bondi, 1964, Van der waals volumes and radii, J. Phys. Chem., 68, 441, 10.1021/j100785a001

Cabaco, 2012, Carbon dioxide in 1-butyl-3-methylimidazolium acetate. I. Unusual solubility investigated by Raman spectroscopy and DFT calculations, J. Phys. Chem. A, 116, 1605, 10.1021/jp211211n

Camper, 2006, Bulk-fluid solubility and membrane feasibility of Rmim-based room-temperature ionic liquids, Ind. Eng. Chem. Res., 45, 6279, 10.1021/ie060177n

Chen, 2012, PVDF/ionic liquid polymer blends with superior separation performance for removing CO2 from hydrogen and flue gas, Int. J. Hydrogen Energy, 37, 11796, 10.1016/j.ijhydene.2012.05.111

Ciferno, 2009, Capturing carbon from existing coal-fired power plants, Chem. Eng. Prog., 105, 33

Couto, 2013, Development of ion-jelly membranes, Sep. Purif. Technol., 106, 22, 10.1016/j.seppur.2012.12.026

Cserjesi, 2010, Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids, J. Membr. Sci., 349, 6, 10.1016/j.memsci.2009.10.044

Dai, 2016, Combination of ionic liquids with membrane technology: a new approach for CO2 separation, J. Membr. Sci., 497, 1, 10.1016/j.memsci.2015.08.060

Gan, 2011, Theoretical and experimental correlations of gas dissolution, diffusion, and thermodynamic properties in determination of gas permeability and selectivity in supported ionic liquid membranes, Adv. Colloids Interface Sci., 164, 45, 10.1016/j.cis.2011.01.005

García, 2015, A theoretical study on mitigation of CO2 through advanced deep eutectic solvents, Int. J. Greenh. Gas Control, 39, 62, 10.1016/j.ijggc.2015.05.004

Hanioka, 2008, CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane, J. Membr. Sci., 314, 1, 10.1016/j.memsci.2008.01.029

Iliuta, 2014, CO2 absorption in diethanolamine/ionic liquid emulsions – chemical kinetics and mass transfer study, Chem. Eng. J., 240, 16, 10.1016/j.cej.2013.11.063

Jalili, 2010, Solubility of CO2 in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions, J. Chem. Thermodyn., 42, 787, 10.1016/j.jct.2010.02.002

Kasahara, 2012, Amino acid ionic liquid-based facilitated transport membranes for CO2 separation, Chem.Commun, 48, 6903, 10.1039/c2cc17380h

Lee, 2013, Metallic copper incorporated ionic liquids toward maximizing CO2 separation properties, Sep. Purif. Technol., 112, 49, 10.1016/j.seppur.2013.03.052

Maiti, 2009, Theoretical screening of ionic liquid solvents for carbon capture, ChemSusChem, 7, 628, 10.1002/cssc.200900086

Neves, 2009, Separation of biohydrogen by supported ionic liquid membranes, Desalination, 240, 311, 10.1016/j.desal.2007.10.095

Neves, 2010, Gas permeation studies in supported ionic liquid membranes, J. Membr. Sci., 357, 160, 10.1016/j.memsci.2010.04.016

Nguyen, 2013, Physically gelled room-temperature ionic liquid-based composite membranes for CO2/N2 separation: effect of composition and thickness on membrane properties and performance, Ind. Eng. Chem. Res., 52, 8812, 10.1021/ie302352r

Ren, 2009, Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes, Renew. Energy, 34, 2774, 10.1016/j.renene.2009.04.011

Robeson, 2008, The upper bound revisited, J. Membr. Sci., 320, 390, 10.1016/j.memsci.2008.04.030

Scovazzo, 2009, Determination of the upperlimits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research, J. Membr. Sci., 343, 199, 10.1016/j.memsci.2009.07.028

Shi, 2012, Theoretical and experimental studies of CO2 and H2 separation using the 1-ethyl-3-methy-limidazolium acetate([emim][CH3COO]) ionic liquid, J. Phys. Chem. B, 116, 283, 10.1021/jp205830d

Tomé, 2013, Pyrrolidinium-based polymeric ionic liquid materials: new perspectives for CO2 separation membranes, J. Membr. Sci., 428, 260, 10.1016/j.memsci.2012.10.044

Tomé, 2015, Polymeric ionic liquid-based membranes: influence of polycation variation on gas transport and CO2 selectivity properties, J. Membr. Sci., 486, 40, 10.1016/j.memsci.2015.03.026

Voss, 2009, Physically gelled ionic liquids: solid membrane materials with liquidlike CO2 gas transport, Chem. Mater., 21, 3027, 10.1021/cm900726p

Xie, 2014, Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids, Appl. Energy, 136, 325, 10.1016/j.apenergy.2014.09.046

Yoo, 2010, CO2 separation membranes using ionic liquids in a Nafion matrix, J. Membr. Sci., 363, 72, 10.1016/j.memsci.2010.07.013

Zoubeik, 2014, Experimental and thermodynamic study of CO2 solubility inpromising [TF2N and DCN] ionic liquids, Fluid Phase Equilibr., 376, 22, 10.1016/j.fluid.2014.05.021