CNS-associated macrophages contribute to intracerebral aneurysm pathophysiology

Martina Glavan1, Andrea Jelić1, Damien Levard1, Juhana Frösén2, Sara Keränen2, Bart A. A. Franx3, Ana Rita Brás4, Estelle R Louet1, Ádám Dénes4, Mario Merlini1, Denis Vivien5, Marina Rubio1
1UNICAEN, INSERM U1237, Etablissement Français du Sang, Physiopathology and Imaging of Neurological Disorders (PhIND), Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), PHIND Boulevard Henri Becquerel, Normandie University, 14000, Caen Cedex, Caen, France
2Hemorrhagic Brain Pathology Research Group, Kuopio University Hospital and AIV Institute for Molecular Medicine, University of Eastern Finland, Kuopio, Finland
3Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
4"Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
5Department of Clinical Research, Caen Normandie University Hospital, Caen, France

Tóm tắt

AbstractIntracerebral aneurysms (IAs) are pathological dilatations of cerebral arteries whose rupture leads to subarachnoid hemorrhage, a significant cause of disability and death. Inflammation is recognized as a critical contributor to the formation, growth, and rupture of IAs; however, its precise actors have not yet been fully elucidated. Here, we report CNS-associated macrophages (CAMs), also known as border-associated macrophages, as one of the key players in IA pathogenesis, acting as critical mediators of inflammatory processes related to IA ruptures. Using a new mouse model of middle cerebral artery (MCA) aneurysms we show that CAMs accumulate in the IA walls. This finding was confirmed in a human MCA aneurysm obtained after surgical clipping, together with other pathological characteristics found in the experimental model including morphological changes and inflammatory cell infiltration. In addition, in vivo longitudinal molecular MRI studies revealed vascular inflammation strongly associated with the aneurysm area, i.e., high expression of VCAM-1 and P-selectin adhesion molecules, which precedes and predicts the bleeding extent in the case of IA rupture. Specific CAM depletion by intracerebroventricular injection of clodronate liposomes prior to IA induction reduced IA formation and rupture rate. Moreover, the absence of CAMs ameliorated the outcome severity of IA ruptures resulting in smaller hemorrhages, accompanied by reduced neutrophil infiltration. Our data shed light on the unexplored role of CAMs as main actors orchestrating the progression of IAs towards a rupture-prone state. Graphical abstract

Từ khóa


Tài liệu tham khảo

Abtin A, Jain R, Mitchell AJ, Roediger B, Brzoska AJ, Tikoo S, Cheng Q, Ng LG, Cavanagh LL, Von Andrian UH, Hickey MJ, Firth N, Weninger W (2014) Perivascular macrophages mediate neutrophil recruitment during bacterial skin infection. Nat Immunol 15:45–53. https://doi.org/10.1038/ni.2769

Angelov SN, Zhu J, Dichek DA (2018) A new mouse model of abdominal aortic aneurysm: put out to expand

Aoki T, Nishimura M, Matsuoka T, Yamamoto K, Furuyashiki T, Kataoka H, Kitaoka S, Ishibashi R, Ishibazawa A, Miyamoto S, Morishita R, Ando J, Hashimoto N, Nozaki K, Narumiya S (2011) PGE2-EP2 signalling in endothelium is activated by haemodynamic stress and induces cerebral aneurysm through an amplifying loop via NF-κB. Br J Pharmacol 163:1237–1249. https://doi.org/10.1111/j.1476-5381.2011.01358.x

Capone C, Faraco G, Park L, Cao X, Davisson RL, Iadecola C (2011) The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. Am J Physiol Heart Circ Physiol 300:H397–H407. https://doi.org/10.1152/ajpheart.00679.2010

Cho MJ, Lee M-R, Park J-G (2023) Aortic aneurysms: current pathogenesis and therapeutic targets. Exp Mol Med 55:2519–2530. https://doi.org/10.1038/s12276-023-01130-w

Crompton MR (1966) Mechanism of growth and rupture in cerebral berry aneurysms. BMJ 1:1138–1142. https://doi.org/10.1136/bmj.1.5496.1138

Culemann S, Knab K, Euler M, Wegner A, Garibagaoglu H, Ackermann J, Fischer K, Kienhöfer D, Crainiciuc G, Hahn J, Grüneboom A, Nimmerjahn F, Uderhardt S, Hidalgo A, Schett G, Hoffmann MH, Krönke G (2023) Stunning of neutrophils accounts for the anti-inflammatory effects of clodronate liposomes. J Exp Med 220:e20220525. https://doi.org/10.1084/jem.20220525

Dalmau Gasull A, Glavan M, Samawar SKR, Kapupara K, Kelk J, Rubio M, Fumagalli S, Sorokin L, Vivien D, Prinz M (2024) The niche matters: origin, function and fate of CNS-associated macrophages during health and disease. Acta Neuropathol 147:37. https://doi.org/10.1007/s00401-023-02676-9

Denes A, Hansen CE, Oezorhan U, Figuerola S, De Vries HE, Sorokin L, Planas AM, Engelhardt B, Schwaninger M (2024) Endothelial cells and macrophages as allies in the healthy and diseased brain. Acta Neuropathol 147:38. https://doi.org/10.1007/s00401-024-02695-0

Drieu A, Du S, Storck SE, Rustenhoven J, Papadopoulos Z, Dykstra T, Zhong F, Kipnis J et al (2022) Parenchymal border macrophages regulate the flow dynamics of the cerebrospinal fluid. Nature 611:585–593. https://doi.org/10.1038/s41586-022-05397-3

Drieu A, Lanquetin A, Levard D, Glavan M, Campos F, Quenault A, Lemarchand E, Naveau M, Pitel AL, Castillo J, Vivien D, Rubio M (2020) Alcohol exposure–induced neurovascular inflammatory priming impacts ischemic stroke and is linked with brain perivascular macrophages. JCI Insight 5:e129226. https://doi.org/10.1172/jci.insight.129226

Faraco G, Park L, Anrather J, Iadecola C (2017) Brain perivascular macrophages: characterization and functional roles in health and disease. J Mol Med 95:1143–1152. https://doi.org/10.1007/s00109-017-1573-x

Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H, Santisteban MM, Racchumi G, Murphy M, Van Rooijen N, Anrather J, Iadecola C (2016) Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Investig 126:4674–4689. https://doi.org/10.1172/JCI86950

Farooqui AA (2022) Neuroinflammation, resolution, and neuroprotection in the brain. Academic Press, London

Franx BAA, Van Der Toorn A, Van Heijningen C, Vivien D, Bonnard T, Dijkhuizen RM (2021) Molecular magnetic resonance imaging of vascular inflammation after recanalization in a rat ischemic stroke model. Stroke. https://doi.org/10.1161/STROKEAHA.121.034910

Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, Jääskeläinen J (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases. Stroke 35:2287–2293. https://doi.org/10.1161/01.STR.0000140636.30204.da

Frösen J, Tulamo R, Paetau A, Laaksamo E, Korja M, Laakso A, Niemelä M, Hernesniemi J (2012) Saccular intracranial aneurysm: pathology and mechanisms. Acta Neuropathol 123:773–786. https://doi.org/10.1007/s00401-011-0939-3

Garcia-Bonilla L, Shahanoor Z, Sciortino R, Nazarzoda O, Racchumi G, Iadecola C, Anrather J (2024) Analysis of brain and blood single-cell transcriptomics in acute and subacute phases after experimental stroke. Nat Immunol 25:357–370. https://doi.org/10.1038/s41590-023-01711-x

Greving JP, Wermer MJH, Brown RD, Morita A, Juvela S, Yonekura M, Ishibashi T, Torner JC, Nakayama T, Rinkel GJE, Algra A (2014) Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol 13:59–66. https://doi.org/10.1016/S1474-4422(13)70263-1

Heindl S, Gesierich B, Benakis C, Llovera G, Duering M, Liesz A (2018) Automated morphological analysis of microglia after stroke. Front Cell Neurosci 12:106. https://doi.org/10.3389/fncel.2018.00106

Huttunen T, Von Und Zu, Fraunberg M, Frösen J, Lehecka M, Tromp G, Helin K, Koivisto T, Rinne J, Ronkainen A, Hernesniemi J, Jääskeläinen JE (2010) Saccular intracranial aneurysm disease: distribution of site, size, and age suggests different etiologies for aneurysm formation and rupture in 316 familial and 1454 sporadic eastern Finnish patients. Neurosurgery 66:631–638. https://doi.org/10.1227/01.NEU.0000367634.89384.4B

Kathuria S, Gregg L, Chen J, Gandhi D (2011) Normal cerebral arterial development and variations. Seminars in Ultrasound, CT and MRI 32:242–251. https://doi.org/10.1053/j.sult.2011.02.002

Kierdorf K, Masuda T, Jordão MJC, Prinz M (2019) Macrophages at CNS interfaces: ontogeny and function in health and disease. Nat Rev Neurosci 20:547–562. https://doi.org/10.1038/s41583-019-0201-x

Korai M, Purcell J, Kamio Y, Mitsui K, Furukawa H, Yokosuka K, Miyamoto T, Sato H, Sato H, Eguchi S, Ai J, Lawton MT, Hashimoto T (2021) Neutrophil extracellular traps promote the development of intracranial aneurysm rupture. Hypertension 77:2084–2093. https://doi.org/10.1161/HYPERTENSIONAHA.120.16252

Kowalski RG (2004) Initial misdiagnosis and outcome after subarachnoid hemorrhage. JAMA 291:866. https://doi.org/10.1001/jama.291.7.866

Kushamae M, Miyata H, Shirai M, Shimizu K, Oka M, Koseki H, Abekura Y, Ono I, Nozaki K, Mizutani T, Aoki T (2020) Involvement of neutrophils in machineries underlying the rupture of intracranial aneurysms in rats. Sci Rep 10:20004. https://doi.org/10.1038/s41598-020-74594-9

Lapenna A, De Palma M, Lewis CE (2018) Perivascular macrophages in health and disease. Nat Rev Immunol 18:689–702. https://doi.org/10.1038/s41577-018-0056-9

Lawton MT, Vates GE (2017) Subarachnoid hemorrhage. N Engl J Med 377:257–266. https://doi.org/10.1056/NEJMcp1605827

Lehenkari PP, Kellinsalmi M, Näpänkangas JP, Ylitalo KV, Mönkkönen J, Rogers MJ, Azhayev A, Väänänen HK, Hassinen IE (2002) Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol 61:1255–1262. https://doi.org/10.1124/mol.61.5.1255

Lim K, Hyun Y-M, Lambert-Emo K, Capece T, Bae S, Miller R, Topham DJ, Kim M (2015) Neutrophil trails guide influenza-specific CD8 + T cells in the airways. Science 349:aaa4352. https://doi.org/10.1126/science.aaa4352

Louet ER, Glavan M, Orset C, Parcq J, Hanley DF, Vivien D (2022) tPA-NMDAR signaling blockade reduces the incidence of intracerebral aneurysms. Transl Stroke Res 13:1005–1016. https://doi.org/10.1007/s12975-022-01004-9

Martínez-Burgo B, Cobb SL, Pohl E, Kashanin D, Paul T, Kirby JA, Sheerin NS, Ali S (2019) A C-terminal CXCL 8 peptide based on chemokine–glycosaminoglycan interactions reduces neutrophil adhesion and migration during inflammation. Immunology 157:173–184. https://doi.org/10.1111/imm.13063

Mehta T, Datta N, Patel S, Mehta K, Hussain M, Kureshi I, Ollenschleger M, Nouh A (2017) Trends in endovascular treatment of aneurysmal subarachnoid hemorrhages. Intervent Neurol 6:236–241. https://doi.org/10.1159/000477468

Metzemaekers M, Gouwy M, Proost P (2020) Neutrophil chemoattractant receptors in health and disease: double-edged swords. Cell Mol Immunol 17:433–450. https://doi.org/10.1038/s41423-020-0412-0

Michalec L, Choudhury BK, Postlethwait E, Wild JS, Alam R, Lett-Brown M, Sur S (2002) CCL7 and CXCL10 orchestrate oxidative stress-induced neutrophilic lung inflammation. J Immunol 168:846–852. https://doi.org/10.4049/jimmunol.168.2.846

Naggara ON, White PM, Guilbert F, Roy D, Weill A, Raymond J (2010) Endovascular treatment of intracranial unruptured aneurysms: systematic review and meta-analysis of the literature on safety and efficacy. Radiology 256:887–897. https://doi.org/10.1148/radiol.10091982

Nuki Y, Tsou T-L, Kurihara C, Kanematsu M, Kanematsu Y, Hashimoto T (2009) Elastase-induced intracranial aneurysms in hypertensive mice. Hypertension 54:1337–1344. https://doi.org/10.1161/HYPERTENSIONAHA.109.138297

Pedragosa J, Salas-Perdomo A, Gallizioli M, Cugota R, Miró-Mur F, Briansó F, Justicia C, Pérez-Asensio F, Marquez-Kisinousky L, Urra X, Gieryng A, Kaminska B, Chamorro A, Planas AM (2018) CNS-border associated macrophages respond to acute ischemic stroke attracting granulocytes and promoting vascular leakage. Acta Neuropathol Commun 6:76. https://doi.org/10.1186/s40478-018-0581-6

Polfliet MMJ, Goede PH, Van Kesteren-Hendrikx EML, Van Rooijen N, Dijkstra CD, Van Den Berg TK (2001) A method for the selective depletion of perivascular and meningeal macrophages in the central nervous system. J Neuroimmunol 116:188–195. https://doi.org/10.1016/S0165-5728(01)00282-X

Quenault A, Martinez de Lizarrondo S, Etard O, Gauberti M, Orset C, Haelewyn B, Segal HC, Rothwell PM, Vivien D, Touzé E, Ali C (2017) Molecular magnetic resonance imaging discloses endothelial activation after transient ischaemic attack. Brain 140:146–157. https://doi.org/10.1093/brain/aww260

Reichel CA, Rehberg M, Lerchenberger M, Berberich N, Bihari P, Khandoga AG, Zahler S, Krombach F (2009) Ccl2 and Ccl3 mediate neutrophil recruitment via induction of protein synthesis and generation of lipid mediators. ATVB 29:1787–1793. https://doi.org/10.1161/ATVBAHA.109.193268

Rinne J, Hernesniemi J, Niskanen M, Vapalahti M (1996) Analysis of 561 Patients with 690 middle cerebral artery aneurysms: anatomic and clinical features as correlated to management outcome. Neurosurgery 38:2–9. https://doi.org/10.1097/00006123-199601000-00002

Santisteban MM, Ahn SJ, Lane D, Faraco G, Garcia-Bonilla L, Racchumi G, Poon C, Schaeffer S, Segarra SG, Körbelin J, Anrather J, Iadecola C (2020) Endothelium-macrophage crosstalk mediates blood-brain barrier dysfunction in hypertension. Hypertension 76:795–807. https://doi.org/10.1161/HYPERTENSIONAHA.120.15581

Shimada K, Yamaguchi I, Ishihara M, Miyamoto T, Sogabe S, Miyake K, Tada Y, Kitazato KT, Kanematsu Y, Takagi Y (2021) Involvement of neutrophil extracellular traps in cerebral arteriovenous malformations. World Neurosurg 155:e630–e636. https://doi.org/10.1016/j.wneu.2021.08.118

Starke R, Chalouhi N, Ali M, Jabbour P, Tjoumakaris S, Gonzalez L, Rosenwasser R, Koch W, Dumont A (2013) The role of oxidative stress in cerebral aneurysm formation and rupture. CNR 10:247–255. https://doi.org/10.2174/15672026113109990003

Tulamo R, Frösen J, Hernesniemi J, Niemelä M (2018) Inflammatory changes in the aneurysm wall: a review. J NeuroIntervent Surg 10:i58–i67. https://doi.org/10.1136/jnis.2009.002055.rep

Vestweber D (2015) How leukocytes cross the vascular endothelium. Nat Rev Immunol 15:692–704. https://doi.org/10.1038/nri3908

Wu Y-C, Bogale TA, Koistinaho J, Pizzi M, Rolova T, Bellucci A (2024) The contribution of β-amyloid, Tau and α-synuclein to blood–brain barrier damage in neurodegenerative disorders. Acta Neuropathol 147:39. https://doi.org/10.1007/s00401-024-02696-z

Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015

Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12:723–738. https://doi.org/10.1038/nrn3114