CMS: a novel surrogate model with hierarchical structure based on correlation mapping

Kunpeng Li1, Tao Fu1, Tianci Zhang1, Xueguan Song1
1School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jin Y, Wang H, Chugh T et al (2019) Data-driven evolutionary optimization: an overview and case studies. IEEE Trans Evol Comput 23:442–458. https://doi.org/10.1109/TEVC.2018.2869001

Chugh T, Sindhya K, Hakanen J, Miettinen K (2019) A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms. Soft Comput 23:3137–3166. https://doi.org/10.1007/s00500-017-2965-0

Forrester AIJ, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling. Proc R Soc A Math Phys Eng Sci 463:3251–3269. https://doi.org/10.1098/rspa.2007.1900

Tang Y, Long T, Shi R et al (2020) Sequential radial basis function-based optimization method using virtual sample generation. J Mech Des Trans ASME 142:1–13. https://doi.org/10.1115/1.4046650

Li K, Wang S, Liu Y, Song X (2021) An integrated surrogate modeling method for fusing noisy and noise-free data. J Mech Des. https://doi.org/10.1115/1.4053044

Bostanabad R, Chan YC, Wang L et al (2019) Globally approximate Gaussian processes for big data with application to data-driven metamaterials design. J Mech Des Trans ASME 141:1–11. https://doi.org/10.1115/1.4044257

Yang Z, Li X, Brinson LC et al (2018) Microstructural materials design via deep adversarial learning methodology. J Mech Des Trans ASME 140:1–10. https://doi.org/10.1115/1.4041371

Hu Z, Mahadevan S (2018) Adaptive surrogate modeling for time-dependent multidisciplinary reliability analysis. J Mech Des Trans ASME. https://doi.org/10.1115/1.4038333

Wang Z, Wang P (2015) An integrated performance measure approach for system reliability analysis. J Mech Des Trans ASME 137:1–11. https://doi.org/10.1115/1.4029222

Lai X, Wang S, Guo Z et al (2021) Designing a shape-performance integrated digital twin based on multiple models and dynamic data: a boom crane example. J Mech Des Trans ASME. https://doi.org/10.1115/1.4049861

Wang S, Lai X, He X et al (2022) Building a trustworthy product-level shape-performance integrated digital twin with multifidelity surrogate model. J Mech Des. https://doi.org/10.1115/1.4052390

Peherstorfer B (2019) Multifidelity Monte Carlo estimation with adaptive low-fidelity models. SIAM-ASA J Uncertain Quantif 7:579–603. https://doi.org/10.1137/17M1159208

Gorodetsky AA, Geraci G, Eldred MS, Jakeman JD (2020) A generalized approximate control variate framework for multifidelity uncertainty quantification. J Comput Phys. https://doi.org/10.1016/j.jcp.2020.109257

Gorodetsky AA, Jakeman JD, Geraci G, Eldred MS (2020) Mfnets: Multi-fidelity data-driven networks for bayesian learning and prediction. Int J Uncertain Quantif 10:595–622. https://doi.org/10.1615/Int.J.UncertaintyQuantification.2020032978

Ng LWT, Eldred MS (2012) Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation. Collect Tech Pap - AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf 1–17. https://doi.org/10.2514/6.2012-1852

Ng LWT, Willcox KE (2014) Multifidelity approaches for optimization under uncertainty. Int J Numer Methods Eng 746–772. https://doi.org/10.1002/nme

Peherstorfer B, Willcox K, Gunzburger M (2018) Survey of multifidelity methods in uncertainty propagation, inference, and optimization. SIAM Rev 60:550–591. https://doi.org/10.1137/16M1082469

Peherstorfer B, Kramer B, Willcox K (2017) Combining multiple surrogate models to accelerate failure probability estimation with expensive high-fidelity models. J Comput Phys 341:61–75. https://doi.org/10.1016/j.jcp.2017.04.012

Giselle Fernández-Godino M, Park C, Kim NH, Haftka RT (2019) Issues in deciding whether to use multifidelity surrogates. AIAA J 57:2039–2054. https://doi.org/10.2514/1.J057750

Cheng M, Jiang P, Hu J et al (2021) A multi-fidelity surrogate modeling method based on variance-weighted sum for the fusion of multiple non-hierarchical low-fidelity data. Struct Multidiscip Optim 64:3797–3818. https://doi.org/10.1007/s00158-021-03055-2

Zhou Q, Wang Y, Choi SK et al (2017) A sequential multi-fidelity metamodeling approach for data regression. Knowledge-Based Syst 134:199–212. https://doi.org/10.1016/j.knosys.2017.07.033

Hao P, Feng S, Li Y et al (2020) Adaptive infill sampling criterion for multi-fidelity gradient-enhanced kriging model. Struct Multidiscip Optim 62:353–373. https://doi.org/10.1007/s00158-020-02493-8

Wang S, Liu Y, Zhou Q et al (2021) A multi-fidelity surrogate model based on moving least squares: fusing different fidelity data for engineering design. Struct Multidiscip Optim 64:3637–3652. https://doi.org/10.1007/s00158-021-03044-5

Haftka RT (1991) Combining global and local approximations. AIAA J 29:1523–1525. https://doi.org/10.2514/3.10768

Eldred MS, Giunta AA, Collis SS (2004) Second-order corrections for surrogate-based optimization with model hierarchies. Collect Tech Pap - 10th AIAA/ISSMO Multidiscip Anal Optim Conf 3:1754–1768. https://doi.org/10.2514/6.2004-4457

Berci M, Toropov VV, Hewson RW, Gaskell PH (2014) Multidisciplinary multifidelity optimisation of a flexible wing aerofoil with reference to a small UAV. Struct Multidiscip Optim 50:683–699. https://doi.org/10.1007/s00158-014-1066-2

Absi GN, Mahadevan S (2020) Simulation and sensor optimization for multifidelity dynamics model calibration. AIAA J 58:879–888. https://doi.org/10.2514/1.J058485

Batra R, Pilania G, Uberuaga BP, Ramprasad R (2019) Multifidelity information fusion with machine learning: a case study of dopant formation energies in hafnia. ACS Appl Mater Interfaces 11:24906–24918. https://doi.org/10.1021/acsami.9b02174

Tao J, Sun G (2019) Application of deep learning based multi-fidelity surrogate model to robust aerodynamic design optimization. Aerosp Sci Technol 92:722–737. https://doi.org/10.1016/j.ast.2019.07.002

Mainini L, Maggiore P (2012) A multifidelity approach to aerodynamic analysis in an integrated design environment. Collect Tech Pap - AIAA/ASME/ASCE/AHS/ASC Struct Struct Dyn Mater Conf 1–16. https://doi.org/10.2514/6.2012-1931

Zhang Y, Kim NH, Park C, Haftka RT (2018) Multifidelity surrogate based on single linear regression. AIAA J 56:4944–4952. https://doi.org/10.2514/1.J057299

Durantin C, Rouxel J, Désidéri JA, Glière A (2017) Multifidelity surrogate modeling based on radial basis functions. Struct Multidiscip Optim 56:1061–1075. https://doi.org/10.1007/s00158-017-1703-7

Zhu QX, Chen ZS, Zhang XH et al (2020) Dealing with small sample size problems in process industry using virtual sample generation: a Kriging-based approach. Soft Comput 24:6889–6902. https://doi.org/10.1007/s00500-019-04326-3

Horn RA, Johnson CR (1985) Matrix Analysis

Yu S, Tranchevent L-C, De Moor B, Moreau Y (2011) Rayleigh Quotient-Type Problems in Machine Learning. Kernel-based Data Fusion for Machine Learning: Methods and Applications in Bioinformatics and Text Mining. Springer, Berlin Heidelberg, pp 27–37

Han ZH, Zimmermann R, Görtz S (2010) A new cokriging method for variable-fidelity surrogate modeling of aerodynamic data. In: 48th AIAA Aerosp Sci Meet Incl New Horizons Forum Aerosp Expo 38108. https://doi.org/10.2514/6.2010-1225

Song X, Lv L, Sun W, Zhang J (2019) A radial basis function-based multi-fidelity surrogate model: exploring correlation between high-fidelity and low-fidelity models. Struct Multidiscip Optim 60:965–981. https://doi.org/10.1007/s00158-019-02248-0

Toal DJJ (2015) Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models. Struct Multidiscip Optim 51:1223–1245. https://doi.org/10.1007/s00158-014-1209-5

Shi M, Lv L, Sun W, Song X (2020) A multi-fidelity surrogate model based on support vector regression. Struct Multidiscip Optim 61:2363–2375. https://doi.org/10.1007/s00158-020-02522-6

Benamara T, Breitkopf P, Lepot I et al (2017) Multi-fidelity POD surrogate-assisted optimization: concept and aero-design study. Struct Multidiscip Optim 56:1387–1412. https://doi.org/10.1007/s00158-017-1730-4

Hu J, Zhang L, Lin Q et al (2021) A conservative multi-fidelity surrogate model-based robust optimization method for simulation-based optimization. Struct Multidiscip Optim 64:2525–2551. https://doi.org/10.1007/s00158-021-03007-w

Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity surrogates. Struct Multidiscip Optim 55:1029–1050. https://doi.org/10.1007/s00158-016-1550-y

Li K, Liu Y, Wang S, Song X (2021) Multifidelity data fusion based on gradient-enhanced surrogate modeling method. J Mech Des. https://doi.org/10.1115/1.4051193

Zhou Y (2021) Linear constrained rayleigh quotient optimization: theory and algorithms. CSIAM Trans Appl Math 2:195–262. https://doi.org/10.4208/csiam-am.2021.nla.01

Seeger M (2004) Gaussian processes for machine learning.

Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering Design via Surrogate Modelling

Suykens JAK, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9:293–300

Tsamardinos I, Rakhshani A, Lagani V (2015) Performance-estimation properties of cross-validation-based protocols with simultaneous hyper-parameter optimization. Int J Artif Intell Tools 24:1–29. https://doi.org/10.1142/S0218213015400230

Viana FAC (2010) SURROGATES Toolbox User’s Guide

Olsson A, Sandberg G, Dahlblom O (2003) On Latin hypercube sampling for structural reliability analysis. Struct Saf 25:47–68. https://doi.org/10.1016/S0167-4730(02)00039-5

Cai X, Qiu H, Gao L et al (2017) Adaptive radial-basis-function-based multifidelity metamodeling for expensive black-box problems. AIAA J 55:2424–2436. https://doi.org/10.2514/1.J055649

Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13:455–492. https://doi.org/10.1023/A:1008306431147

Park C, Haftka RT, Kim NH (2018) Low-fidelity scale factor improves Bayesian multi-fidelity prediction by reducing bumpiness of discrepancy function. Struct Multidiscip Optim 58:399–414. https://doi.org/10.1007/s00158-018-2031-2

Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23:1–13. https://doi.org/10.1007/s00158-001-0160-4

Bi Q, Wang G, Wang Y et al (2020) Digging trajectory optimization for cable shovel robotic excavation based on a multi-objective genetic algorithm. Energies. https://doi.org/10.3390/en13123118

Wang X, Sun W, Li E, Song X (2018) Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning. Struct Multidiscip Optim 58:2219–2237. https://doi.org/10.1007/s00158-018-2011-6

Zhao S, Lu TF, Koch B, Hurdsman A (2013) Dynamic modelling of 3D stockpile for life-cycle management through sparse range point clouds. Int J Miner Process 125:61–77. https://doi.org/10.1016/j.minpro.2013.09.009