CHARGE TRANSFER COMPLEXES OF NITRO DERIVATIVES OF 9,10-PHENANTHRENEQUINONE WITH ANTHRACENE. CRYSTAL AND MOLECULAR STRUCTURES OF THE (1:1) COMPLEX OF 2,4,7-TRINITRO- 9,10-PHENANTHRENEQUINONE WITH ANTHRACENE

Springer Science and Business Media LLC - Tập 62 - Trang 137-146 - 2021
R. V. Linko1, M. A. Ryabov, P. V. Strashnov1, N. A. Polyanskaya1, V. V. Davydov1, P. V. Dorovatovskii2, I. V. Lin’ko1, V. N. Khrustalev3
1Peoples Friendship University of Russia (RUDN University), Moscow, Russia
2National Research Center Kurchatov Institute, Moscow, Russia
3Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Charge transfer complexes (CTCs) are obtained by the interaction of 9,10-phenanthrenequinone nitro derivatives with anthracene. By electron spectroscopy it is established that the acceptor properties of the former increase with increasing number of nitro groups and depend on their position. 1,3,6-Trinitro-9,10-phenanthrenequinone, which forms with anthracene a CTC with a charge transfer band near 658 nm, is found to be the strongest acceptor. Charge transfer values from the donor (D) to the acceptor (A), ranging from 0.034 ē to 0.091 ē, formation energies of [A–D] complexes, HOMO and LUMO gaps in CTC are found by quantum chemical calculations, and they correlate with the experimental positions of long-wave bands in the electron absorption spectra of the complexes in solutions. The crystal and molecular structures of new 1:1 CTC of 2,4,7-trinitro-9,10-phenanthrenequinone with anthracene is determined by single crystal X-ray diffraction. In crystal, CTC has a {⋯[A–D]⋯[A–D]′⋯}∞ packing of the mixed type where average interplanar distances are 3.35 Å, with the shortest C⋯C distance being 3.234(2) Å, and intermolecular C–H⋯O hydrogen bonds are in the range 2.50-2.69 Å.

Tài liệu tham khảo

M. A. Dobrowolski, G. Garbarino, M. Mezouar, A. Ciesielski, and M. K. Cyrański. CrystEngComm, 2014, 16, 415. J. Ferraris, D. O. Cowan, V. Walatka, and J. H. Perlstein. J. Am. Chem. Soc., 1973, 95, 948. H. Alves, A. S. Molinari, H. X. Xie, and A. F. Morpurgo. Nat. Mater., 2008, 7, 574. K. P. Goetz, D. Vermeulen, M. E. Payne, C. Kloc, L. E. McNeil, and O. D. Jurchescu. J. Mater. Chem. C, 2014, 2, 3065. L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito, and A. J. Heege. Solid State Commun., 1973, 12, 1125. H. Kondo and T. Moriya. J. Phys. Soc. Jpn., 1998, 67, 3695. J. Singleton and C. Mielke. Contemp. Phys., 2002, 43, 63. J. Wosnitza. J. Low Temp. Phys., 2007, 146, 641. W. Yu, X.-Y. Wang, J. Li, Z.-T. Li, Y.-K. Yan, W. Wang, and J. Pei. Chem. Commun., 2013, 49, 54. Yu. V. Korshak, T. V. Medvedeva, A. A. Ovchinnikov, and V. N. Spector. Nature, 1987, 326, 370. T. Sugimoto, K. Ueda, S. Endo, N. Toyota, T. Tada, K. Nishimura, M. Kohama, K. Shiwaku, K. Yamamoto, T. Yamaguchi, Y. Suenaga, and M. Munakata. Chem. Phys. Lett., 1998, 288, 767. J. Singleton. J. Solid State Chem., 2002, 168, 675. T. Enoki and A. Miyazaki. Chem. Rev., 2004, 104, 5449. A. Radvakova, O. Kazheva, A. Chekhlov, O. A. Dyachenko, M. Kucmin, M. Kajnakova, A. Feher, and V. Starodub. J. Phys. Chem. Solids, 2010, 71, 752. S. Horiuchi and Y. Tokura. Nat. Mater., 2008, 7, 357. A. S. Tayi, A. K. Shveyd, A. C. H. Sue, J. M. Szarko, B. S. Rolczynski, D. Cao, T. J. Kennedy, A. A. Sarjeant, C. L. Stern, W. F. Paxton, W. Wu, S. K. Dey, A. C. Fahrenbach, J. R. Guest, H. Mohseni, L. X. Chen, K. L. Wang, J. F. Stoddart, and S. I. Stupp. Nature, 2012, 488, 485. S. Horiuchi, K. Kobayashi, R. Kumai, N. Minami, F. Kagawa, and Y. Tokura. Nat. Commun., 2015, 6, 7469. A. Narayanan, D. Cao, L. Frazer, A. S. Tayi, A. K. Blackburn, A. C. H. Sue, J. B. Ketterson, J. F. Stoddart, and S. I. Stupp. J. Am. Chem. Soc., 2017, 139, 9186. V. A. Starodub and T. N. Starodub. Russ. Chem. Rev., 2014, 83, 391. C. D. Dimitrakopoulos and P. R. L. Malenfant. Adv. Mater., 2002, 14, 99. E. Menard, V. Podzorov, S.-H. Hur, A. Gaur, M. E. Gershenson, and J. A. Rogers. Adv. Mater., 2004, 16, 2097. B. Mukherjee and M. Mukherjee. Langmuir, 2011, 27, 11246. R. Otero, J. M. Gallego, A. L. Vasquez de Parga, N. Martin, and R. Miranda. Adv. Mater., 2011, 23, 5148. A. Suzuki, T. Ohtsuki, T. Oku, and T. Akiyama. Mater. Sci. Eng., 2012, B177, 877. M. Shiraishi and T. Ikoma. Phys. E (Amsterdam, Neth.), 2011, 43, 1295. S. Barja, M. Garnica, J. J. Hinarejos, A. L. Vazquez de Parga, N. Martin, and R. Miranda. Chem. Commun., 2010, 46, 8198. K. Kudo, M. Nagaoka, S. Kuniyoshi, and K. Tanaka. Synth. Met., 1995, 71, 2059. H. Isotalo, G. Yunome, R. Azumi, M. Matsumoto, T. Nakamura, S. Horiuchi, H. Yamochi, and G. Saito. Synth. Met., 1995, 70, 1229. P. Hu, K. Du, F. Wei, H. Jiang, and C. Kloc. Cryst. Growth Des., 2016, 16, 3019. M. Singh and D. Chopra. Cryst. Growth Des., 2018, 18, 6670. B. Averkiev, R. Isaac, E. V. Jucov, V. N. Khrustalev, C. Kloc, L. E. McNeil, and T. V. Timofeeva. Cryst. Growth Des., 2018, 18, 4095. J. Henderson, M. Masino, L. E. Hatcher, G. Kociok-Köhn, T. Salzillo, A. Brillante, and P. R. Raithby, A. Girlando, E. Da Como. Cryst. Growth Des., 2018, 18, 2003. T. K. Mukherjee. J. Phys. Chem., 1967, 71, 2277. J. Schmidt. Chem. Ber., 1903, 36, 3726. S. Kato, M. Maezawa, S. Hirano, and S. Ishigaku. Yuki Gosei Kagaku Kyokai Shi, 1957, 15, 29. A. M. Andrievskii, R. V. Linko, and M. K. Grachev. Russ. J. Org. Chem., 2013, 49, 1025. A. M. Andrievskii, M. V. Gorelik, R. V. Linko, and M. K. Grachev. Russ. J. Org. Chem., 2013, 49, 1474. T. G. G. Battye, L. Kontogiannis, O. Johnson, H. R. Powell, and A. G. W. Leslie. Acta Crystallogr., Sect. D, 2011, 67, 271. P. Evans. Acta Crystallogr., Sect. D, 2006, 62, 72. G. M. Sheldrick. Acta Crystallogr., Sect. C, 2015, 71, 3. S. F. Boys and F. Bernardi. Mol. Phys., 1970, 19, 553. E. Caldeweyher, C. Bannwarth, and S. Grimme. J. Chem. Phys., 2017, 147, 034112. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, and F. Weinhold. Theoretical Chemistry Institute, University of Wisconsin: NBO 5.G. Madison, WI, 2004. A. A. Granovsky. Firefly, version 8.20, http://classic.chem.msu.su/gran/firefly/index.html. R. S. Mulliken and W. B. Person. Molecular Complexes. Wiley-Interscience: New York, 1969. G. V. Gridunova, V. E. Shklover, Yu. T. Struchkov, E. N. Sidorenko, A. M. Andrievskii, Z. I. Ezhkova, and K. M. Dyumaev. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.), 1986, 35, 1163. R. V. Linko, V. A. Soldatkina, B. E. Zaitsev, V. I. Sokol, and V. V. Davydov. Russ. Chem. Bull., 1999, 48, 734. F. M. Allen, O. Kennard, D. G. Watson L. Brammer, A. G. Orpen, and R. Taylor. J. Chem. Soc., Perkin Trans. 2, 1987, S1. N. I. Sadova and L. V. Vilkov. Russ. Chem. Rev., 1982, 51, 87. V. C. Sinclair, J. M. Robertson, and A. M. Mathieson. Acta Crystallogr., 1950, 3, 251. D. Britton. Acta Crystallogr., Sect. E, 2005, 61, o1707. P. Hu, H. Li, Y. Li, H. Jiang, and C. Kloc. CrystEngComm, 2017, 19, 618.