CGMM LASSO-type estimator for the process of Ornstein-Uhlenbeck type
Tóm tắt
In this paper, westudy the LASSO-type penalized CGMM(GMM with continuum of moment method) estimator for the process of Ornstein-Uhlenbeck type. This LASSO-type estimator is obtained by minimizing the summation of the CGMM object function and a LASSO-type penalty, which is included for model selection. In the proposed method, model selection and estimation are done simultaneously. Under some regularity conditions, the proposed estimator asymptotically follows a non-standard normal distribution (Caner, 2009). Simulation study shows that the proposed estimator correctly selects the true model much more frequently than the commonly used Bayesian Information Criterion (BIC) and Akaike Information Criterion (AIC).
Tài liệu tham khảo
Barndorff-Nielsen, O. E. (1997). Normal Inverse Gaussian Distributions and Stochastic Volatility Modelling. Scandinavian Journal of Statistics, 24, 1–13.
Barndorff-Nielsen, O. E. (1998). Processes of normal inverse Gaussian type. Finance and Stochastics, 2, 41–68.
Barndorff-Nielsen, O. E. (2001). Superposition of Ornstein–Uhlenbeck type processes. Theory of Probability and Its Applications, 45, 175–194.
Barndorff-Nielsen, O. E., Jensen, J. L., & Sørensen, M. (1998). Some stationary processes in discrete and continuous time. Advances in Applied Probability, 30(4), 989–1007.
Barndorff-Nielsen, O. E., & Shephard, N. (2001). Non-Gaussian Ornstein–Uhlenbeck-based models and some of their uses in financial economics. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 63, 167–241.
Barndorff-Nielsen, O. E., & Shephard, N. (2003). Integrate OU processes and non-Gaussian OU-based stochastic volatility models. Scandinavian Journal of Statistics, 30, 277–295.
Caner, M. (2009). LASSO-type GMM estimator. Econometric Theory, 25, 270–290.
Carrasco, M., Chernov, M., Florens, J. P., & Ghysels, E. (2007). Efficient estimation of general dynamic models with a continuum of moment conditions. Journal of Econometrics, 140, 529–573.
Carrasco, M., & Florens, J. P. (2002). Efficient GMM estimation using the empirical characteristic function. Mimeo. CREST. Paris.
Carrasco, M., & Kotchoni, R. (2010). Efficient estimation using the characteristic function. Available at SSRN. http://ssrn.com/abstract=1470423 or https://doi.org/10.2139/ssrn.1470423.
Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics, 32, 407–489.
Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456), 1348–1360.
Gregorio, A. D., & Iacus, S. M. (2012). Adaptive LASSO-type estimation for multivariate diffusion processes. Econometric Theory, 28, 838–860.
Hsu, N. J., Hung, H. L., & Chang, Y. M. (2008). Subset selection for vector autoregressive processes using the Lasso. Computational Statistics and Data Analysis, 52, 3645–3657.
Jacod, J. (1985). Grossissement de filtration et processus d’Ornstein–Uhlenbeck généralisé. In T. Jenlin, & M. Yor (Eds.), Lecture Notes in Math.: Vol. 1118. Grossissements de Filtrations: Exemples et Applications (pp. 36–44). Berlin: Springer-Verlag.
Knight, K., & Fu, W. (2000). Asymptotics for Lasso-type estimators. Annals of Statistics, 28, 1356–1378.
Leng, C., Lin, Y., & Wahba, G. (2006). A note on lasso and related procedures in model selection. Statistica Sinica, 16, 1273–1284.
Masuda, H. (2004). On multidimensional Ornstein–Uhlenbeck processes driven by a general Lévy process. Bernoulli, 10, 97–120.
Nardi, Y., & Rinaldo, A. (2011). Autoregressive processes modeling via the Lasso procedure. Journal of Multivariate Analysis, 102, 528–549.
Sato, K. (1999). Lévy processes and infinitely divisible distributions. Cambridge: Cambridge University Press.
Sato, K., & Yamazato, M. (1984). Stationary processes of Ornstein–Uhlenbeck type. In K. Ito, & J. V. Prokhorov (Eds.), Lecture Notes in Mathematics: Vol. 1021. Probability Theory and Mathematical Statistics. Fourth USSR-Japan Symposium Proceedings, 1982 (pp. 541–551). Berlin: Springer-Verlag.
Shephard, N. G. (1991). From characteristic function to distribution function: a simple framework for the theory. Econometric Theory, 7, 519–529.
Taufer, E., & Leonenko, N. (2009). Simulation of Lévy-driven Ornstein–Uhlenbeck processes with given marginal distribution. Computational Statistics and Data Analysis, 53, 2427–2437.
Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B, 58, 267–288.
Wang, H., & Leng, C. (2007). Unified LASSO estimation by least squares approximation. Journal of the American Statistical Association, 102(479), 1039–1048.
Wang, H., Li, G., & Tsai, C. L. (2007). Regression coefficient and autoregressive order shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B, 169(1), 63–78.
Wang, Y. F., Tang, Y. L., & Xinsheng Zhang, X. S. (2013). Estimation of parameters of the Ornstein–Uhlenbeck type processes with continuum of moment conditions. Communications in Statistics–Theory and Methods, t. appear.
Wolfe, S. J. (1982). On a continuous analogue of the stochastic difference equation Xn = ρX n−1+B n. Stochastic Processes and their Applications, 12, 301–312.
Yuan, M., & Lin, Y. (2007). On the Nonnegative Garrote estimator. Journal of the Royal Statistical Society: Series B, 69, 143–161.
Zhang, S. B., & Zhang, X. S. (2008). Exact simulation of IG-OU processes. Methodology and Computing in Applied Probability, 10, 337–355.