Nghiên cứu CFD về tăng cường truyền nhiệt và đặc điểm dòng chảy của dòng chảy hỗn loạn bên trong các ống có rãnh xoắn

Taye Stephen Mogaji1, Abdullahi O. Olapojoye1, Emmanuel Toluwalope Idowu1, B. Saleh2
1Department of Mechanical Engineering, School of Engineering and Engineering Technology, Federal University of Technology Akure, Ondo State, Nigeria
2Mechanical Engineering Department, College of Engineering, Taif University, Taif, Saudi Arabia

Tóm tắt

Trong nghiên cứu này, sự tăng cường truyền nhiệt trong ống có rãnh xoắn bên trong được điều tra một cách số học và xác thực với dữ liệu thực nghiệm từ Aroonrat et al. (Int Commun Heat Mass Transfer 42:62-68, 2013). Các mô phỏng được thực hiện bằng cách sử dụng phần mềm động lực học chất lỏng tính toán ANSYS-FLUENT để hiểu rõ hơn về sự gia tăng truyền nhiệt trong ống trơn và ống có rãnh xoắn với ba kích thước bước rãnh khác nhau, 19, 57 và 95 mm. Các mô phỏng được thực hiện cho điều kiện dòng chảy hỗn loạn với số Reynolds từ 12.000 đến 22.000, sử dụng nước làm chất lỏng làm việc. Kết quả cho thấy rằng ống cải tiến, không phụ thuộc vào kích thước bước rãnh đã thử nghiệm, cung cấp hiệu suất nhiệt-hydraulic tốt hơn so với các ống trơn cùng loại. Với mục đích ước lượng trường hợp tối ưu mang lại hệ số hiệu suất nhiệt cao nhất khi sử dụng kỹ thuật tăng cường truyền nhiệt này, phân tích sự tăng cường tổng thể cũng được thực hiện. Các tương quan toán học để dự đoán số Nusselt và hệ số ma sát trong ống có rãnh xoắn bên trong cũng được đề xuất trong nghiên cứu này. Việc sử dụng hình học bề mặt cải tiến với ống có rãnh xoắn bên trong là hợp lý và có lợi nếu được áp dụng trong vùng số Reynolds hỗn loạn tương đối thấp của bình bay hơi.

Từ khóa

#truyền nhiệt #ống có rãnh xoắn #số Reynolds #mô phỏng CFD #hiệu suất nhiệt-hydraulic

Tài liệu tham khảo

Aroonrat K, Jumpholkul C, Leelaprachakul R, Dalkilic AS, Mahian O, Wongwises S (2013) Heat transfer and single-phase flow in internally grooved tubes. Int Commun Heat Mass Transfer 42:62–68 Bilen K, Cetin M, Gul H, Balta T (2009) The investigation of groove geometry effect on heat transfer for internally grooved tubes. Appl Therm Eng 29:753–761 Blasius H (1908) Grenzschichten in flussigkeitenmitkleinerreibung, Zeritschrift fur angewandteMathematik und Physik 56:1–37 Ceylan K, Kelbaliyev G (2003) The roughness effects on friction and heat transfer in the fully developed turbulent flow in pipes. Appl Therm Eng 23:557–570 Chen J, Li W (2018) Local convective condensation heat transfer in horizontal doublelayer threedimensional dimplegrooved tubes. Int J Heat Mass Transfer. https://doi.org/10.1016/j.ijheatmasstransfer.2018 Chen Z, Choi Y (2018). Suppression of cavitation in the draft tube if Francis turbine model by J-Groove. https://doi.org/10.1177/0954406218802310 Cheng, W., Chen, H., Yuan, S., Zhong, Q. and Fan, Y., 2017, Experimental study on heat transfer characteristics of R134a flow boiling in “Ω”-shaped grooved tube with different flow directions, International Journal of Heat and Mass Transfer, Vol. 108, Part A (May 2017), 988–997. Dittus FW, Boelter LMK (1930) Heat transfer in automobile radiators of the tubular type, Univ. Calif. Int Chem Eng 2:443–461 Eiamsa-ard S, Promvonge P (2008) Numerical study on heat transfer of turbulent channel flow over periodic grooves. Int Commun Heat Mass Transf 35:844–852 Eiamsa-ard S, Wongcharee K, Sripattanapipat S (2009) 3D Numerical simulation of swirling flow and convective heat transfer in a circular Tube induced by means of loose-fit twisted tapes. Int Commun Heat Mass Transfer 36:947–955 Gnielinski V (1976) New equations for heat and mass transfer in turbulent pipe and channel flow. Int Chem Eng 16(2):35–368 Graham D, Chato JC, Newell TA (1999) Heat transfer and pressure drop during condensation of refrigerant 134a in an axially grooved tube. Int J Heat Mass Transf 42:1935–1944 Jiji LM (2009) Heat Convection, 2nd edn. Springer, Germany Johar G, Hasda V 2010 Experimental studies on heat transfer augmentation using modified reduced width twisted tapes (RWTT) as inserts for tube side flow of liquids. Thesis, Department of Chemical Engineering, National Institute of Technology Rourkela. Khalatov AA, Kovalenko GV, Meiris AZh (2018) Heat transfer in air flow across a single-row bundle of tubes with spiral grooves. J Eng Phys Thermophys 91:64–71 Kumar P (2019) Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure. Int J Heat Mass Transfer 136:33–43 Liu S, Sakr M (2013) A comprehensive review on passive heat transfer enhancements in pipe exchangers. Renew Sustain Energy Rev 19:64–81 Manjunath K, Kaushik SC (2014) Second law thermodynamic study of heat exchangers: a review. Renew Sustain Energy Rev 40:348–374 Mogaji TS, Olapojoye AO, Idowu ET (2020) Numerical study of the heat transfer enhancement inside an internally helical grooved tubes containing twisted tape inserts. J Multidiscip Eng Science Studies 6:3062–3071 Naveenkumar R, Karthikeyan N, Gopan SN, Rajaram S, Ravichandran M (2020) Analysis of heat transfer in grooved plain carbon steel tube for solar applications. Mater Today: Proc 33:4219–4223 Naveenkumar R, Karthikeyan N, Nandha Gopan S, Rajaram S, Ravichandran M (2020) Analysis of heat transfer in grooved plain carbon steel tube for solar applications. Mater Today Proc. https://doi.org/10.1016/j.matpr.2020.07.234 Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum transfer in three dimensional parabolic flows. Int J Heat Mass Transf 15:1787–1806 Petukhov BS (2015) Heat transfer and friction in turbulent pipe flow with variable physical properties in Advances in heat transfer, J.P. Hartnett and T.F. Irvine, Jr., Editors. Academic Press: New York, pp 503–564 Pirbastami S, Moujaes SF, Mol SG (2016) Computational fluid dynamics simulation of heat enhancement in internally helical grooved tubes. Int Commun Heat Mass Transf 73:25–33 Qi C, Han X, Lv H, Xing Y (April 2018) and Han, K, 2018, Experimental study of heat transfer and scale formation of spiral grooved tube in the falling film distilled desalination. Int J Heat Mass Transf 119:654–664 Rahman M, Zhen T, Kadir AK, 2013 Numerical simulation of fluid flow and heat transfer in enhanced copper tube, 4th International Conference on Energy and Environment (ICEE), Springer Verlag, Malaysia. Ramadhan AA, Al Anii YT, Shareef AJ (2012) Groove geometry effects on turbulent heat transfer and fluid flow. Heat Mass Transf Springer 49:185–195 Tusar M, Ahmed K, Bhuiya M, Bhowmik P, Rasul M, Ashwath N (2019) CFD study of heat transfer enhancement and fluid flow characteristics of laminar flow through tube with helical screw tape insert. Energy Procedia 160:699–706. https://doi.org/10.1016/j.egypro.2019.02.190 Sheikholeslami M, Gorji-Bandpy M, Ganji DD (2015) Review of heat transfer enhancement methods: focus on passive methods using swirl flow devices. Renew Sustain Energy Rev 49:444–469 Singh S, Singh B, Hans VS, Gill RS (2015) CFD (computational fluid dynamics) investigation on Nusselt number and friction factor of solar air heater duct roughened with non-uniform cross-section transverse rib. J Energy 84:509–517 Tang XY, Jiang G, Cao G (2015) Parameters study and analysis of turbulent flow and heat transfer enhancement in narrow channel with discrete grooved structures. Chem Eng Res Des 93:232–250 Tusar KA, Mehedi H, Mu MKB, Bhowmik P. 2019 CFD study of heat transfer Webb, R.L., Kim, N.H., 2005. Principles of enhanced heat transfer (2nd ed.), New York: Taylor & Francis. Zheng N, Liu P, Shan F, Liu Z, Liu W (2017) Turbulent flow and heat transfer enhancement in a heat exchanger tube fitted with novel discrete inclined grooves. Int J Thermal Sci 111:289–300 Zheng N, Liu P, Shan F, Liu Z, Liu W (2016) Numerical investigations of the thermal-hydraulic performance in a rib-grooved heat exchanger tube based on entropy generation analysis. Int J Heat Mass Transf 99:1071–1085 Zheng N, Liu P, Shan F, Liu Z, Liu W (2016) Heat transfer enhancement in a novel internally grooved tube by generating longitudinal swirl flows with multi-vortexes. Appl Therm Eng 95:421–432 Zheng N, Liu P, Shan F, Liu Z, Liu W (2017) Turbulent flow and heat transfer enhancement in a heat exchanger tube fitted with novel discrete inclined grooves. Int J Thermal Sci 111(2017):289–300