Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Mô phỏng CFD về Hiệu suất Lọc của Bộ Lọc Sợi với Cân nhắc Tới Trường Điện Thế Sợi
Tóm tắt
Nhằm làm rõ các tác động định lượng của lực Coulomb đối với hiệu suất lọc của các hạt aerosol, một mô hình sợi ngẫu nhiên ba chiều đã được thiết lập để mô tả cấu trúc vi mô của các bộ lọc sợi. Sau đó, các mô hình tính toán bao gồm mô hình dòng chảy, mô hình hạt, và mô hình điện trường đã được xây dựng để ước tính hiệu suất lọc bằng cách sử dụng chương trình hàm người dùng tùy chỉnh Fluent, bỏ qua sự không đồng nhất của thế năng sợi và phân bố điện tích của hạt. Kết quả mô phỏng sử dụng các mô hình đã thiết lập phù hợp với dữ liệu trong tài liệu. Đặc biệt, lực điện trường được phát hiện là một trong những yếu tố quan trọng cần thiết để cải thiện độ chính xác ước lượng hiệu suất lọc cho các hạt siêu mịn. Hơn nữa, các xu hướng biến đổi của hiệu suất lọc và chênh lệch áp suất của các bộ lọc sợi đã được nghiên cứu dựa trên các yếu tố ảnh hưởng của thế năng sợi, tỷ lệ điện tích trên khối lượng của hạt, phân khối lượng rắn, đường kính sợi, và vận tốc mặt. Các mô hình đã thiết lập và kết quả ước tính sẽ cung cấp hướng dẫn quan trọng cho việc thiết kế các bộ lọc không khí hạt hiệu suất cao cho các hạt aerosol.
Từ khóa
#lực Coulomb #hiệu suất lọc #mô hình sợi ngẫu nhiên #mô phỏng CFD #bộ lọc sợi #hạt aerosolTài liệu tham khảo
Zhao X, Li Y, Hua T et al (2017) Low-resistance dual-purpose air filter releasing negative ions and effectively capturing PM2.5. ACS Appl Mater Interface 9(13):12054–12063
Al-Attabi R, Dumée LF, Kong L et al (2018) High efficiency poly(acrylonitrile) electrospun nanofiber membranes for airborne nanomaterials filtration. Adv Eng Mater 20(1):1700572
Singh VK, Ravi SK, Sun WX et al (2017) Transparent nanofibrous mesh self-assembled from molecular LEGOs for high efficiency air filtration with new functionalities. Small 13(6):1601924
Bortolassi ACC, Guerra VG, Aguiar ML (2017) Characterization and evaluate the efficiency of different filter media in removing nanoparticles. Sep Purif Technol 175:79–86
Van Osdell DW, Liu BYH, Rubow KL et al (1990) Experimental study of submicrometer and ultrafine particle penetration and pressure drop for high efficiency filters. Aerosol Sci Technol 12(4):911–925
Li J, Leavey A, Wang Y et al (2018) Comparing the performance of 3 bioaerosol samplers for influenza virus. J Aerosol Sci 115:133–145
Thorne PS, Reynolds SJ, Milton DK et al (1997) Field evaluation of endotoxin air sampling assay methods. Am Ind Hyg Assoc J 58(11):792–799
Harstad JB (1965) Sampling submicron T1 bacteriophage aerosols. Appl Environ Microbiol 13(6):899–908
Yuan QP, Zhang H, Qian ZM et al (2004) Pilot-plant production of xylo-oligosaccharides from corncob by steaming, enzymatic hydrolysis and nanofiltration. J Chem Technol Biotechnol 79(10):1073–1079
Yuan JS, Ji ZY, Chen JX et al (2013) Resource utilization of concentrated seawater generated during desalination. Hebei Univ Technol 42(1):29–35
Yeom BY, Shim E, Pourdeyhimi B (2010) Boehmite nanoparticles incorporated electrospun nylon-6 nanofiber web for new electret filter media. Macromol Res 18(9):884–890
Tang M, Thompson D, Chang DQ et al (2018) Filtration efficiency and loading characteristics of PM 2.5 through commercial electret filter media. Sep Purif Technol 195:101–109
Zhu M, Han J, Wang F et al (2017) Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng 302(1):1600353
Gervais PC, Bourrous S, Dany F et al (2015) Simulations of filter media performances from microtomography-based computational domain. Experimental and analytical comparison. Comput Fluids 116:118–128
Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102(2):1285–1290
Huang H, Zheng C, Zhao H (2017) Numerical investigation on non-steady-state filtration of elliptical fibers for submicron particles in the ‘‘Greenfield gap’’ range. J Aerosol Sci 114:263–275
Payatakes AC, Gradoń L (1980) Dendritic deposition of aerosol particles in fibrous media by inertial impaction and interception. Chem Eng Sci 35(5):1083–1096
Ramarao BV, Chi TE, Mohan S (1994) Calculation of single fiber efficiencies for interception and impaction with superposed Brownian motion. J Aerosol Sci 25(2):295–313
Zhu C, Lin CH, Cheung CS (2000) Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers. Powder Technol 112(1):149–162
Wang H, Zhao H, Wang K et al (2014) Simulating and modeling particulate removal processes by elliptical fibers. Aerosol Sci Technol 48(2):207–218
Hosseini SA, Tafreshi HV (2010) 3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technol 201(2):153–160
Hosseini SA, Tafreshi HV (2012) Modeling particle-loaded single fiber efficiency and fiber drag using ANSYS–Fluent CFD code. Comput Fluids 66:157–166
Huang B, Yao Q, Li SQ et al (2006) Experimental investigation on the particle capture by a single fiber using microscopic image technique. Powder Technol 163(3):125–133
Cai RR, Zhang LZ (2016) Modeling of dynamic deposition and filtration processes of airborne particles by a single fiber with a coupled lattice Boltzmann and discrete element method. Build Environ 106:274–285
Wang H, Zhao H, Wang K et al (2013) Simulation of filtration process for multi-fiber filter using the Lattice-Boltzmann two-phase flow model. J Aerosol Sci 66:164–178
Wang CS (2001) Electrostatic forces in fibrous filters—a review. Powder Technol 118(1–2):166–170
Shou D, Fan J, Zhang H et al (2015) Filtration efficiency of non-uniform fibrous filters. Aerosol Sci Technol 49(10):912–919
Babaie M, Talebi S, Abouali O (2018) Numerical investigation on dust-loaded fibrous filters. J Braz Soc Mech Sci 40(4):223
Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14(4):527–532
Dong M, Li J, Shang Y et al (2019) Numerical investigation on deposition process of submicron particles in collision with a single cylindrical fiber. J Aerosol Sci 129:1–15
Gopan A, Yang Z, Axelbaum RL (2019) Predicting particle deposition for flow over a circular cylinder in combustion environments. Proc Combust Inst 37(4):4427–4434
Hosseini SA, Tafreshi HV (2010) Modeling particle filtration in disordered 2-D domains: a comparison with cell models. Sep Purif Technol 74(2):160–169
Jin X, Yang L, Du X (2017) Modeling filtration performance of elliptical fibers with random distributions. Adv Powder Technol 28(4):1193–1201
Nielsen KA, Hill JC (1976) Capture of particles on spheres by inertial and electrical forces. Ind Eng Chem Fundam 15(3):157–163
D’Addio L, di Natale F, Carotenuto C et al (2013) A lab-scale system to study submicron particles removal in wet electrostatic scrubbers. Chem Eng Sci 97:176–185
Hamaguchi S, Farouki RT (1994) Polarization force on a charged particulate in a nonuniform plasma. Phys Rev E 49(5):4430
Kanaoka C, Hiragi S, Tanthapanichakoon W (2001) Stochastic simulation of the agglomerative deposition process of aerosol particles on an electret fiber. Powder Technol 118(1–2):97–106
Zuo Z, Wang J, Huo Y et al (2016) Particle motion induced by electrostatic force of a charged droplet. Environ Eng Sci 33(9):650–658
Adamiak K (1995) Aerosol deposition on an arbitrarily oriented single rectangular fibre in a uniform electric field. In: IAS’95. conference record of the 1995 IEEE industry applications conference thirtieth IAS annual meeting. IEEE, vol. 2, pp. 1385–1389
Hoppel WA (1976) Ion-aerosol attachment coefficients and the diffusional charging of aerosols. Electrical processes in atmospheres. Springer, Heidelberg, pp 60–69
Hoppel WA (1985) Ion-aerosol attachment coefficients, ion depletion, and the charge distribution on aerosols. J Geophys Res-Atmos 90(D4):5917–5923
Dhanorkar S, Kamra AK (2001) Effect of coagulation on the particle charge distribution and air conductivity. J Geophys Res-Atmos 106(D11):12055–12065
Saleh AM, Tafreshi HV, Pourdeyhimi B (2016) An analytical approach to predict pressure drop and collection efficiency of dust-load pleated filters. Sep Purif Technol 161:80–87
Huang H, Wang K, Zhao H (2016) Numerical study of pressure drop and diffusional collection efficiency of several typical noncircular fibers in filtration. Powder Technol 292:232–241
Davies C (1973) Air filtration. Academic Press, London
Happel J (1959) Viscous flow relative to arrays of cylinders. AIChE J 5(2):174–177
Tek MR (1957) Development of a generalized Darcy equation. J Pet Technol 9(6):45–47
Fotovati S, Vahedi Tafreshi H, Pourdeyhimi B (2010) Influence of fiber orientation distribution on performance of aerosol filtration media. Chem Eng Sci 65(18):5285–5293
Hinds WC (2012) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, Hoboken
Brown RC (1984) A many-fibre model of airflow through a fibrous filter. J Aerosol Sci 15(5):583–593
Lee KW, Liu BYH (1982) Theoretical study of aerosol filtration by fibrous filters. Aerosol Sci Technol 1(2):147–161
Stechkina IB, Fuchs NA (1966) Studies on fibrous aerosol filters—I. Calculation of diffusional deposition of aerosols in fibrous filters. Ann Occup Hyg 9(2):59–64
Liu BYH, Rubow KL (1990) Efficiency, pressure drop and figure of merit of high efficiency fibrous and membrane filter media. In: Proceedings of the fifth world filtration congress 9
Payet S, Boulaud D, Madelaine G et al (1992) Penetration and pressure drop of a HEPA filter during loading with submicron liquid particles. JAerosol Sci 23(7):723–735
Lee KW, Liu BYH (1982) Experimental study of aerosol filtration by fibrous filters. Aerosol Sci Technol 1(1):35–46
Pich J (1966) The effectiveness of the barrier effect in fiber filters at small Knudsen numbers. Staub Reinhalt Luft 26:1–4
Lee KW, Gieseke JA (1980) Note on the approximation of interceptional collection efficiencies. J Aerosol Sci 11(4):335–341
Oyama Y, Osaki T, Kamiya K et al (2012) A glass fiber sheet-based electroosmotic lateral flow immunoassay for point-of-care testing. Lab Chip 12(24):5155–5159
Hung CH, Leung WWF (2011) Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol 79(1):34–42
Tsai CJ, Lin JS, Deshpande CG et al (2005) Electrostatic charge measurement and charge neutralization of fine aerosol particles during the generation process. Part Part Syst Charact 22(5):293–298
Wong J, Lin YW, Kwok PCL et al (2015) Measuring bipolar charge and mass distributions of powder aerosols by a novel tool (BOLAR). Mol Pharm 12(9):3433–3440
Mazumder MK, Sims RA, Biris AS et al (2006) Twenty-first century research needs in electrostatic processes applied to industry and medicine. Chem Eng Sci 61(7):2192–2211
Givehchi R, Li Q, Tan Z (2015) The effect of electrostatic forces on filtration efficiency of granular filters. Powder Technol 277:135–140
Yun KM, Jr HoganCJ, Matsubayashi Y et al (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62(17):4751–4759
Li YY, Fu HM, Hu YL (2011) Numerical simulation of three dimensional flow fields of fiber filter media. J Text Res 32(5):16–21
Soltani P, Johari MS, Zarrebini M (2014) Effect of 3D fiber orientation on permeability of realistic fibrous porous networks. Powder Technol 254:44–56
Podgórski A, Bałazy A, Gradoń L (2006) Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 61(20):6804–6815
Balgis R, Kartikowati CW, Ogi T et al (2015) Synthesis and evaluation of straight and bead-free nanofibers for improved aerosol filtration. Chem Eng Sci 137:947–954
Ahn YC, Park SK, Kim GT et al (2006) Development of high efficiency nanofilters made of nanofibers. Curr Appl Phys 6(6):1030–1035