Mô phỏng CFD về Hiệu suất Lọc của Bộ Lọc Sợi với Cân nhắc Tới Trường Điện Thế Sợi

Transactions of Tianjin University - Tập 25 - Trang 437-450 - 2019
Lei Hou1, Ayang Zhou1, Xiao He1, Wei Li1, Yan Fu1, Jinli Zhang1
1School of Chemical Engineering and Technology, Tianjin University, Tianjin, China

Tóm tắt

Nhằm làm rõ các tác động định lượng của lực Coulomb đối với hiệu suất lọc của các hạt aerosol, một mô hình sợi ngẫu nhiên ba chiều đã được thiết lập để mô tả cấu trúc vi mô của các bộ lọc sợi. Sau đó, các mô hình tính toán bao gồm mô hình dòng chảy, mô hình hạt, và mô hình điện trường đã được xây dựng để ước tính hiệu suất lọc bằng cách sử dụng chương trình hàm người dùng tùy chỉnh Fluent, bỏ qua sự không đồng nhất của thế năng sợi và phân bố điện tích của hạt. Kết quả mô phỏng sử dụng các mô hình đã thiết lập phù hợp với dữ liệu trong tài liệu. Đặc biệt, lực điện trường được phát hiện là một trong những yếu tố quan trọng cần thiết để cải thiện độ chính xác ước lượng hiệu suất lọc cho các hạt siêu mịn. Hơn nữa, các xu hướng biến đổi của hiệu suất lọc và chênh lệch áp suất của các bộ lọc sợi đã được nghiên cứu dựa trên các yếu tố ảnh hưởng của thế năng sợi, tỷ lệ điện tích trên khối lượng của hạt, phân khối lượng rắn, đường kính sợi, và vận tốc mặt. Các mô hình đã thiết lập và kết quả ước tính sẽ cung cấp hướng dẫn quan trọng cho việc thiết kế các bộ lọc không khí hạt hiệu suất cao cho các hạt aerosol.

Từ khóa

#lực Coulomb #hiệu suất lọc #mô hình sợi ngẫu nhiên #mô phỏng CFD #bộ lọc sợi #hạt aerosol

Tài liệu tham khảo

Zhao X, Li Y, Hua T et al (2017) Low-resistance dual-purpose air filter releasing negative ions and effectively capturing PM2.5. ACS Appl Mater Interface 9(13):12054–12063 Al-Attabi R, Dumée LF, Kong L et al (2018) High efficiency poly(acrylonitrile) electrospun nanofiber membranes for airborne nanomaterials filtration. Adv Eng Mater 20(1):1700572 Singh VK, Ravi SK, Sun WX et al (2017) Transparent nanofibrous mesh self-assembled from molecular LEGOs for high efficiency air filtration with new functionalities. Small 13(6):1601924 Bortolassi ACC, Guerra VG, Aguiar ML (2017) Characterization and evaluate the efficiency of different filter media in removing nanoparticles. Sep Purif Technol 175:79–86 Van Osdell DW, Liu BYH, Rubow KL et al (1990) Experimental study of submicrometer and ultrafine particle penetration and pressure drop for high efficiency filters. Aerosol Sci Technol 12(4):911–925 Li J, Leavey A, Wang Y et al (2018) Comparing the performance of 3 bioaerosol samplers for influenza virus. J Aerosol Sci 115:133–145 Thorne PS, Reynolds SJ, Milton DK et al (1997) Field evaluation of endotoxin air sampling assay methods. Am Ind Hyg Assoc J 58(11):792–799 Harstad JB (1965) Sampling submicron T1 bacteriophage aerosols. Appl Environ Microbiol 13(6):899–908 Yuan QP, Zhang H, Qian ZM et al (2004) Pilot-plant production of xylo-oligosaccharides from corncob by steaming, enzymatic hydrolysis and nanofiltration. J Chem Technol Biotechnol 79(10):1073–1079 Yuan JS, Ji ZY, Chen JX et al (2013) Resource utilization of concentrated seawater generated during desalination. Hebei Univ Technol 42(1):29–35 Yeom BY, Shim E, Pourdeyhimi B (2010) Boehmite nanoparticles incorporated electrospun nylon-6 nanofiber web for new electret filter media. Macromol Res 18(9):884–890 Tang M, Thompson D, Chang DQ et al (2018) Filtration efficiency and loading characteristics of PM 2.5 through commercial electret filter media. Sep Purif Technol 195:101–109 Zhu M, Han J, Wang F et al (2017) Electrospun nanofibers membranes for effective air filtration. Macromol Mater Eng 302(1):1600353 Gervais PC, Bourrous S, Dany F et al (2015) Simulations of filter media performances from microtomography-based computational domain. Experimental and analytical comparison. Comput Fluids 116:118–128 Qin XH, Wang SY (2006) Filtration properties of electrospinning nanofibers. J Appl Polym Sci 102(2):1285–1290 Huang H, Zheng C, Zhao H (2017) Numerical investigation on non-steady-state filtration of elliptical fibers for submicron particles in the ‘‘Greenfield gap’’ range. J Aerosol Sci 114:263–275 Payatakes AC, Gradoń L (1980) Dendritic deposition of aerosol particles in fibrous media by inertial impaction and interception. Chem Eng Sci 35(5):1083–1096 Ramarao BV, Chi TE, Mohan S (1994) Calculation of single fiber efficiencies for interception and impaction with superposed Brownian motion. J Aerosol Sci 25(2):295–313 Zhu C, Lin CH, Cheung CS (2000) Inertial impaction-dominated fibrous filtration with rectangular or cylindrical fibers. Powder Technol 112(1):149–162 Wang H, Zhao H, Wang K et al (2014) Simulating and modeling particulate removal processes by elliptical fibers. Aerosol Sci Technol 48(2):207–218 Hosseini SA, Tafreshi HV (2010) 3-D simulation of particle filtration in electrospun nanofibrous filters. Powder Technol 201(2):153–160 Hosseini SA, Tafreshi HV (2012) Modeling particle-loaded single fiber efficiency and fiber drag using ANSYS–Fluent CFD code. Comput Fluids 66:157–166 Huang B, Yao Q, Li SQ et al (2006) Experimental investigation on the particle capture by a single fiber using microscopic image technique. Powder Technol 163(3):125–133 Cai RR, Zhang LZ (2016) Modeling of dynamic deposition and filtration processes of airborne particles by a single fiber with a coupled lattice Boltzmann and discrete element method. Build Environ 106:274–285 Wang H, Zhao H, Wang K et al (2013) Simulation of filtration process for multi-fiber filter using the Lattice-Boltzmann two-phase flow model. J Aerosol Sci 66:164–178 Wang CS (2001) Electrostatic forces in fibrous filters—a review. Powder Technol 118(1–2):166–170 Shou D, Fan J, Zhang H et al (2015) Filtration efficiency of non-uniform fibrous filters. Aerosol Sci Technol 49(10):912–919 Babaie M, Talebi S, Abouali O (2018) Numerical investigation on dust-loaded fibrous filters. J Braz Soc Mech Sci 40(4):223 Kuwabara S (1959) The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. J Phys Soc Jpn 14(4):527–532 Dong M, Li J, Shang Y et al (2019) Numerical investigation on deposition process of submicron particles in collision with a single cylindrical fiber. J Aerosol Sci 129:1–15 Gopan A, Yang Z, Axelbaum RL (2019) Predicting particle deposition for flow over a circular cylinder in combustion environments. Proc Combust Inst 37(4):4427–4434 Hosseini SA, Tafreshi HV (2010) Modeling particle filtration in disordered 2-D domains: a comparison with cell models. Sep Purif Technol 74(2):160–169 Jin X, Yang L, Du X (2017) Modeling filtration performance of elliptical fibers with random distributions. Adv Powder Technol 28(4):1193–1201 Nielsen KA, Hill JC (1976) Capture of particles on spheres by inertial and electrical forces. Ind Eng Chem Fundam 15(3):157–163 D’Addio L, di Natale F, Carotenuto C et al (2013) A lab-scale system to study submicron particles removal in wet electrostatic scrubbers. Chem Eng Sci 97:176–185 Hamaguchi S, Farouki RT (1994) Polarization force on a charged particulate in a nonuniform plasma. Phys Rev E 49(5):4430 Kanaoka C, Hiragi S, Tanthapanichakoon W (2001) Stochastic simulation of the agglomerative deposition process of aerosol particles on an electret fiber. Powder Technol 118(1–2):97–106 Zuo Z, Wang J, Huo Y et al (2016) Particle motion induced by electrostatic force of a charged droplet. Environ Eng Sci 33(9):650–658 Adamiak K (1995) Aerosol deposition on an arbitrarily oriented single rectangular fibre in a uniform electric field. In: IAS’95. conference record of the 1995 IEEE industry applications conference thirtieth IAS annual meeting. IEEE, vol. 2, pp. 1385–1389 Hoppel WA (1976) Ion-aerosol attachment coefficients and the diffusional charging of aerosols. Electrical processes in atmospheres. Springer, Heidelberg, pp 60–69 Hoppel WA (1985) Ion-aerosol attachment coefficients, ion depletion, and the charge distribution on aerosols. J Geophys Res-Atmos 90(D4):5917–5923 Dhanorkar S, Kamra AK (2001) Effect of coagulation on the particle charge distribution and air conductivity. J Geophys Res-Atmos 106(D11):12055–12065 Saleh AM, Tafreshi HV, Pourdeyhimi B (2016) An analytical approach to predict pressure drop and collection efficiency of dust-load pleated filters. Sep Purif Technol 161:80–87 Huang H, Wang K, Zhao H (2016) Numerical study of pressure drop and diffusional collection efficiency of several typical noncircular fibers in filtration. Powder Technol 292:232–241 Davies C (1973) Air filtration. Academic Press, London Happel J (1959) Viscous flow relative to arrays of cylinders. AIChE J 5(2):174–177 Tek MR (1957) Development of a generalized Darcy equation. J Pet Technol 9(6):45–47 Fotovati S, Vahedi Tafreshi H, Pourdeyhimi B (2010) Influence of fiber orientation distribution on performance of aerosol filtration media. Chem Eng Sci 65(18):5285–5293 Hinds WC (2012) Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley, Hoboken Brown RC (1984) A many-fibre model of airflow through a fibrous filter. J Aerosol Sci 15(5):583–593 Lee KW, Liu BYH (1982) Theoretical study of aerosol filtration by fibrous filters. Aerosol Sci Technol 1(2):147–161 Stechkina IB, Fuchs NA (1966) Studies on fibrous aerosol filters—I. Calculation of diffusional deposition of aerosols in fibrous filters. Ann Occup Hyg 9(2):59–64 Liu BYH, Rubow KL (1990) Efficiency, pressure drop and figure of merit of high efficiency fibrous and membrane filter media. In: Proceedings of the fifth world filtration congress 9 Payet S, Boulaud D, Madelaine G et al (1992) Penetration and pressure drop of a HEPA filter during loading with submicron liquid particles. JAerosol Sci 23(7):723–735 Lee KW, Liu BYH (1982) Experimental study of aerosol filtration by fibrous filters. Aerosol Sci Technol 1(1):35–46 Pich J (1966) The effectiveness of the barrier effect in fiber filters at small Knudsen numbers. Staub Reinhalt Luft 26:1–4 Lee KW, Gieseke JA (1980) Note on the approximation of interceptional collection efficiencies. J Aerosol Sci 11(4):335–341 Oyama Y, Osaki T, Kamiya K et al (2012) A glass fiber sheet-based electroosmotic lateral flow immunoassay for point-of-care testing. Lab Chip 12(24):5155–5159 Hung CH, Leung WWF (2011) Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime. Sep Purif Technol 79(1):34–42 Tsai CJ, Lin JS, Deshpande CG et al (2005) Electrostatic charge measurement and charge neutralization of fine aerosol particles during the generation process. Part Part Syst Charact 22(5):293–298 Wong J, Lin YW, Kwok PCL et al (2015) Measuring bipolar charge and mass distributions of powder aerosols by a novel tool (BOLAR). Mol Pharm 12(9):3433–3440 Mazumder MK, Sims RA, Biris AS et al (2006) Twenty-first century research needs in electrostatic processes applied to industry and medicine. Chem Eng Sci 61(7):2192–2211 Givehchi R, Li Q, Tan Z (2015) The effect of electrostatic forces on filtration efficiency of granular filters. Powder Technol 277:135–140 Yun KM, Jr HoganCJ, Matsubayashi Y et al (2007) Nanoparticle filtration by electrospun polymer fibers. Chem Eng Sci 62(17):4751–4759 Li YY, Fu HM, Hu YL (2011) Numerical simulation of three dimensional flow fields of fiber filter media. J Text Res 32(5):16–21 Soltani P, Johari MS, Zarrebini M (2014) Effect of 3D fiber orientation on permeability of realistic fibrous porous networks. Powder Technol 254:44–56 Podgórski A, Bałazy A, Gradoń L (2006) Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chem Eng Sci 61(20):6804–6815 Balgis R, Kartikowati CW, Ogi T et al (2015) Synthesis and evaluation of straight and bead-free nanofibers for improved aerosol filtration. Chem Eng Sci 137:947–954 Ahn YC, Park SK, Kim GT et al (2006) Development of high efficiency nanofilters made of nanofibers. Curr Appl Phys 6(6):1030–1035