CERES Synoptic Product: Methodology and Validation of Surface Radiant Flux

Journal of Atmospheric and Oceanic Technology - Tập 32 Số 6 - Trang 1121-1143 - 2015
David A. Rutan1, Seiji Kato2, David R. Doelling2, Fred G. Rose1, L. Nguyen1, Thomas E. Caldwell1, Norman G. Loeb2
1NASA Langley Research Center, Hampton, Virginia
2SSAI, Hampton, Virginia

Tóm tắt

AbstractThe Clouds and the Earth’s Radiant Energy System Synoptic (SYN1deg), edition 3, product provides climate-quality global 3-hourly 1° × 1°gridded top of atmosphere, in-atmosphere, and surface radiant fluxes. The in-atmosphere surface fluxes are computed hourly using a radiative transfer code based upon inputs from Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS), 3-hourly geostationary (GEO) data, and meteorological assimilation data from the Goddard Earth Observing System. The GEO visible and infrared imager calibration is tied to MODIS to ensure uniform MODIS-like cloud properties across all satellite cloud datasets. Computed surface radiant fluxes are compared to surface observations at 85 globally distributed land (37) and ocean buoy (48) sites as well as several other publicly available global surface radiant flux data products. Computed monthly mean downward fluxes from SYN1deg have a bias (standard deviation) of 3.0 W m−2 (5.7%) for shortwave and −4.0 W m−2 (2.9%) for longwave compared to surface observations. The standard deviation between surface downward shortwave flux calculations and observations at the 3-hourly time scale is reduced when the diurnal cycle of cloud changes is explicitly accounted for. The improvement is smaller for surface downward longwave flux owing to an additional sensitivity to boundary layer temperature/humidity, which has a weaker diurnal cycle compared to clouds.

Từ khóa


Tài liệu tham khảo

Augustine, 2000, SURFRAD – A national surface radiation budget network for atmospheric research, Bull. Amer. Meteor. Soc., 81, 2341, 10.1175/1520-0477(2000)081<2341:SANSRB>2.3.CO;2

Barker, 1996, A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds. Part I: Methodology and homogeneous biases, J. Atmos. Sci., 53, 2289, 10.1175/1520-0469(1996)053<2289:APFCGA>2.0.CO;2

Bergman, 1996, Diurnal variations of cloud cover and their relationship to climatological conditions, J. Climate, 9, 2802, 10.1175/1520-0442(1996)009<2802:DVOCCA>2.0.CO;2

Bloom, 2005

Cairns, 1995, Diurnal variation of cloud from ISCCP data, Atmos. Res., 37, 133, 10.1016/0169-8095(94)00074-N

Collins, 2001, Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX, J. Geophys. Res., 106, 7313, 10.1029/2000JD900507

Dee, 2011, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quart. J. Roy. Meteor. Soc., 137, 553, 10.1002/qj.828

Dilley, 1998, Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water, Quart. J. Roy. Meteor. Soc., 124, 1391, 10.1002/qj.49712454903

Doelling, 2013, Geostationary enhanced temporal interpolation for CERES flux products, J. Atmos. Oceanic Technol., 30, 1072, 10.1175/JTECH-D-12-00136.1

Fu, 1993, Parameterization of the radiative properties of cirrus clouds, J. Atmos. Sci., 50, 2008, 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2

Fu, 1998, Broadband water vapor absorption of solar radiation tested using ARM data, Geophys. Res. Lett., 25, 1169, 10.1029/98GL00846

Henderson, 2013, A multisensor perspective on the radiative impacts of clouds and aerosols, J. Appl. Meteor. Climatol, 52, 853, 10.1175/JAMC-D-12-025.1

Hess, 1998, Optical properties of aerosols and clouds: The software package OPAC, Bull. Amer. Meteor. Soc., 79, 831, 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2

Jin, 2004, A parameterization of ocean surface albedo, Geophys. Res. Lett., 31, L22301, 10.1029/2004GL021180

Kato, 1999, The k-distribution method and correlated-k approximation for a shortwave radiative transfer model, J. Quant. Spectrosc. Radiat. Transfer, 62, 109, 10.1016/S0022-4073(98)00075-2

Kato, 2005, Computation of domain-averaged irradiance using satellite-derived cloud properties, J. Atmos. Oceanic Technol., 22, 146, 10.1175/JTECH-1694.1

Kato, 2011, Improvements of top-of-atmosphere and surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived cloud and aerosol properties, J. Geophys. Res., 116, D19209, 10.1029/2011JD016050

Kato, 2013, 10.1175/JCLI-D-12-00436.1

Kratz, 1999, Accounting for molecular absorption within the spectral range of the CERES window channel, J. Quant. Spectrosc. Radiat. Transfer, 61, 83, 10.1016/S0022-4073(97)00203-3

Loeb, 2009, Toward optimal closure of the Earth’s top-of-atmosphere radiation budget, J. Climate, 22, 748, 10.1175/2008JCLI2637.1

Loeb, 2012, Advances in understanding top-of-atmosphere radiation variability from satellite observations, Surv. Geophys., 33, 10.1007/s10712-012-9175-1

Long, 2000, Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects, J. Geophys. Res., 105, 15 609, 10.1029/2000JD900077

McPhaden, 2002

McPhaden, 2009, RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction, Bull. Amer. Meteor. Soc., 90, 459, 10.1175/2008BAMS2608.1

Minnis, 1984, Diurnal variability of regional cloud and clear-sky radiative parameters derived from GOES data, Part II: November 1978 cloud results, J. Climate Appl. Meteor., 23, 1012, 10.1175/1520-0450(1984)023<1012:DVORCA>2.0.CO;2

Minnis, 1995

Minnis, 2011, CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms, IEEE Trans. Geosci. Remote Sens., 49, 4374, 10.1109/TGRS.2011.2144601

Minnis, 2011, CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data, IEEE Trans. Geosci. Remote Sens.

Ohmura, 1998, Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate change research, Bull. Amer. Meteor. Soc., 79, 2115, 10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2

Oreopoulos, 1999, Accounting for subgrid-scale cloud variability in a multi-layer 1D solar radiative transfer algorithm, Quart. J. Roy. Meteor. Soc., 125, 301, 10.1002/qj.49712555316

Pinker, 1992, Modeling surface solar irradiance for satellite applications on a global scale, J. Appl. Meteor., 31, 194, 10.1175/1520-0450(1992)031<0194:MSSIFS>2.0.CO;2

Remer, 2005, The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62, 947, 10.1175/JAS3385.1

Rienecker, 2011, MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624, 10.1175/JCLI-D-11-00015.1

Roemmich, 2009, 10.1016/j.pocean.2009.03.004

Rose, 2006

Rose, 2013, An algorithm for the constraining of radiative transfer calculations to CERES-observed broadband top-of-atmosphere irradiance, J. Atmos. Oceanic Technol., 30, 1091, 10.1175/JTECH-D-12-00058.1

Rossow, 1991, ISCCP cloud data products, Bull. Amer. Meteor. Soc., 72, 2, 10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2

Rossow, 1999, Advances in understanding clouds from ISCCP, Bull. Amer. Meteor. Soc., 80, 2261, 10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2

Rozendaal, 1995, An observational study of diurnal variations of marine stratiform cloud, J. Climate, 8, 1795, 10.1175/1520-0442(1995)008<1795:AOSODV>2.0.CO;2

Rutan, 2009, Development and assessment of broadband surface albedo from Clouds and the Earth’s Radiant Energy System clouds and radiation swath data product, J. Geophys. Res., 114, D08125, 10.1029/2008JD010669

Servain, 1998, A Pilot Research Moored Array in the Tropical Atlantic (PIRATA), Bull. Amer. Meteor. Soc., 79, 2019, 10.1175/1520-0477(1998)079<2019:APRMAI>2.0.CO;2

Slingo, 2004, Simulation of the diurnal cycle in a climate model and its evaluation using data from Meteosat 7, Quart. J. Roy. Meteor. Soc., 130, 1449, 10.1256/qj.03.165

Smith, 2011, Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future, Adv. Space Res., 48, 254, 10.1016/j.asr.2011.03.009

Stackhouse, 2011

Stephens, 2012, An update on Earth’s energy balance in light of the latest global observations, Nat. Geosci., 5, 10.1038/ngeo1580

Swinbank, 1963, Long-wave radiation from clear skies, Quart. J. Roy. Meteor. Soc., 89, 339, 10.1002/qj.49708938105

Taylor, 2001, Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183, 10.1029/2000JD900719

Taylor, 2012, Tropical outgoing longwave radiation and longwave cloud forcing diurnal cycles from CERES, J. Atmos. Sci., 69, 3652, 10.1175/JAS-D-12-088.1

Tegen, 1996, Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol, J. Geophys. Res., 101, 19 237, 10.1029/95JD03610

Toon, , 1989, Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres, J. Geophys. Res., 94, 16 287, 10.1029/JD094iD13p16287

Trenberth, 2009, Earth’s global energy budget, Bull. Amer. Meteor. Soc., 90, 311, 10.1175/2008BAMS2634.1

Wielicki, 1996, Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment, Bull. Amer. Meteor. Soc., 77, 853, 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2

Wilber, 1999, 1999

Yang, S.-K., S.Zhou, and A. J.Miller, 1998: SMOBA: A 3-dimensional daily ozone analysis using SBUV/2 and TOVS measurements. Accessed 6 January 2015. [Available online at http://www.cpc.ncep.noaa.gov/products/stratosphere/SMOBA/smoba_doc.shtml.]

Zhang, 1995, Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method and sensitivity to input data uncertainties, J. Geophys. Res., 100, 1149, 10.1029/94JD02747

Zhang, 2004, 10.1029/2003JD004457

Zhang, 2006, Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere, J. Geophys. Res., 111, D13106, 10.1029/2005JD006873