CED-Net: contextual encoder–decoder network for 3D face reconstruction

Springer Science and Business Media LLC - Tập 28 Số 5 - Trang 1713-1722 - 2022
Lei Zhu1, Shanmin Wang2, Zengqun Zhao3, Xiang Xu3, Qingshan Liu3
1Nanjing University of Information science and Technology
2College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
3Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amberg, B., Romdhani, S., Vetter, T.: Optimal step nonrigid ICP algorithms for surface registration. In: 2007 IEEE conference on computer vision and pattern recognition, p 1–8, (2007)

Belongie, S., Malik, J., Puzicha, J.: Shape context: a new descriptor for shape matching and object recognition. Adv. Neural Inform. Process. Syst. 13 (2000)

Bhagavatula, C., Zhu, C., Luu, K., Savvides, M.: Faster than real-time facial alignment: a 3d spatial transformer network approach in unconstrained poses. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3980–3989 (2017)

Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proceedings of the 26th annual conference on Computer graphics and interactive techniques, pp 187–194 (1999)

Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)

Booth, J., Antonakos, E., Ploumpis, S., Trigeorgis, G., Panagakis, Y., Zafeiriou, S.: 3D face morphable models“ in-the-wild”. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 48–57 (2017)

Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2d and 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks). In: Proceedings of the IEEE International Conference on Computer Vision, pp 1021–1030 (2017)

Cao, C., Hou, Q., Zhou, K.: Displaced dynamic expression regression for real-time facial tracking and animation. ACM Trans. Graph. (TOG) 33(4), 1–10 (2014)

Cao, C., Weng, Y., Lin, S., Zhou, K.: 3d shape regression for real-time facial animation. ACM Trans. Graph. (TOG) 32(4), 1–10 (2013)

Cao, C., Weng, Y., Zhou, S., Tong, Y., Zhou, K.: Facewarehouse: a 3d facial expression database for visual computing. IEEE Trans. Vis. Comput. Graph. 20(3), 413–425 (2013)

Chinaev, N., Chigorin, A., Laptev, I.: Mobileface: 3d face reconstruction with efficient CNN regression. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops, p 0 (2018)

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16 x 16 words: transformers for image recognition at scale. (2020), arXiv preprint arXiv:2010.11929

Feng, Y., Wu, F., Shao, X., Wang, Y., Zhou, X.: Joint 3d face reconstruction and dense alignment with position map regression network. In: Proceedings of the European conference on computer vision (ECCV), pp 534–551 (2018)

Gecer, B., Lattas, A., Ploumpis, S., Deng, J., Papaioannou, A., Moschoglou, S., Zafeiriou, S.: Synthesizing coupled 3d face modalities by trunk-branch generative adversarial networks. In: European conference on computer vision, pp 415–433, Springer (2020)

Guo, J., Zhu, X., Yang, Y., Yang, F., Lei, Z., Li, S.Z.: Towards fast, accurate and stable 3d dense face alignment. In: European Conference on Computer Vision, pp 152–168. Springer, (2020)

Hao, Y., Zhu, H., Wu, K., Lin, X., Ma, L.: Salient-points-guided face alignment. Multimed. Syst. 25(5), 475–485 (2019)

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications. (2017), arXiv preprint. arXiv:1704.04861

Huber, P., Feng, Z.-H., Christmas, W., Kittler, J., Rätsch, M.: Fitting 3d morphable face models using local features. In: 2015 IEEE international conference on image processing (ICIP), pp 1195–1199. IEEE, (2015)

Jackson, A. S., Bulat, A., Argyriou, V., Tzimiropoulos, G.: Large pose 3d face reconstruction from a single image via direct volumetric CNN regression. In: Proceedings of the IEEE international conference on computer vision, pp 1031–1039 (2017)

Jiang, Y., Chang, S., Wang, Z.: Transgan: two pure transformers can make one strong gan, and that can scale up. Adv. Neural Inform. Process. Syst. 34 (2021)

Jourabloo, A., Liu, X.: Pose-invariant 3d face alignment. In: Proceedings of the IEEE international conference on computer vision, pp 3694–3702 (2015)

Jourabloo, A., Liu, X.: Large-pose face alignment via CNN-based dense 3d model fitting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4188–4196 (2016)

Koestinger, M., Wohlhart, P., Roth, P. M., Bischof, H.: Annotated facial landmarks in the wild: a large-scale, real-world database for facial landmark localization. In: 2011 IEEE international conference on computer vision workshops (ICCV workshops), pp 2144–2151 (2011)

Lee, Y.J., Lee, S.J., Park, K.R., Jo, J., Kim, J.: Single view-based 3d face reconstruction robust to self-occlusion. EURASIP J. Adv. Signal Process. 2012(1), 1–20 (2012)

Liu, Y., Jourabloo, A., Ren, W., Liu, X.: Dense face alignment. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp 1619–1628 (2017)

McDonagh, J., Tzimiropoulos, G.: Joint face detection and alignment with a deformable hough transform model. In: European Conference on Computer Vision, pp 569–580. Springer (2016)

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., Tran, D.: Image transformer. In: International Conference on Machine Learning PMLR, pp 4055–4064 (2018)

Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3d face model for pose and illumination invariant face recognition. In: 2009 sixth IEEE international conference on advanced video and signal based surveillance, pp 296–301 (2009)

Qin, Y., Zhao, C., Zhu, X., Wang, Z., Yu, Z., Fu, T., Zhou, F., Shi, J., Lei, Z.: Learning meta model for zero-and few-shot face anti-spoofing. In: Proceedings of the AAAI Conference on Artificial Intelligence 34, 11916–11923 (2020)

Tu, X., Zhao, J., Xie, M., Jiang, Z., Balamurugan, A., Luo, Y., Zhao, Y., He, L., Ma, Z., Feng, J.: 3d face reconstruction from a single image assisted by 2d face images in the wild. IEEE Trans. Multimed. 23, 1160–1172 (2020)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inform. Process. Syst. 30 (2017)

Veerasamy, B., Annadurai, S.: Video compression using hybrid hexagon search and teaching-learning-based optimization technique for 3d reconstruction. Multimed. Syst. 27(1), 45–59 (2021)

Wu, F., Li, S., Zhao, T., Ngan, K.N., Sheng, L.: Cascaded regression using landmark displacement for 3d face reconstruction. Pattern Recogn. Lett. 125, 766–772 (2019)

Xiong, S., Ma, L., Cheng, M., Wang, B.: Pinyin-to-chinese conversion on sentence-level for domain-specific applications using self-attention model. Multimed. Syst. 1–12 (2021)

Xiong, X., De la Torre, F.: Global supervised descent method. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2664–2673 (2015)

Yi, H., Li, C., Cao, Q., Shen, X., Li, S., Wang, G., Tai, Y.-W.: Mmface: a multi-metric regression network for unconstrained face reconstruction. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 7663–7672 (2019)

Yu, H., Cheang, C., Fu, Y., Xue, X.: Hando: a hybrid 3d hand-object reconstruction model for unknown objects. Multimed. Syst. 1–15 (2022)

Yu, Z., Li, X., Niu, X., Shi, J., Zhao, G.: Face anti-spoofing with human material perception. In: European Conference on Computer Vision, pp 557–575. Springer, (2020)

Zhao, Z., Liu, Q.: Former-dfer: Dynamic facial expression recognition transformer. In: Proceedings of the 29th ACM International Conference on Multimedia, pp 1553–1561 (2021)

Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S. Z.: Face alignment across large poses: a 3d solution. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 146–155 (2016)

Zhu, X., Lei, Z., Yan, J., Yi, D., Li, S. Z.: High-fidelity pose and expression normalization for face recognition in the wild. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 787–796 (2015)

Zhu, X., Liu, X., Lei, Z., Li, S.Z.: Face alignment in full pose range: a 3d total solution. IEEE Trans. Pattern Anal. Mach. Intell. 41(1), 78–92 (2017)

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection, (2020). arXiv preprint. arXiv:2010.04159

Zollhöfer, M., Thies, J., Garrido, P., Bradley, D., Beeler, T., Pérez, P., Stamminger, M., Nießner, M., Theobalt, C.: State of the art on monocular 3d face reconstruction, tracking, and applications. Comput. Graph. Forum 37, 523–550 (2018)