CD38-NAD+Axis Regulates Immunotherapeutic Anti-Tumor T Cell Response

Cell Metabolism - Tập 27 - Trang 85-100.e8 - 2018
Shilpak Chatterjee1, Anusara Daenthanasanmak2, Paramita Chakraborty1, Megan W. Wyatt2, Payal Dhar2, Shanmugam Panneer Selvam3, Jianing Fu2, Jinyu Zhang2, Hung Nguyen2, Inhong Kang4, Kyle Toth1, Mazen Al-Homrani1, Mahvash Husain1, Gyda Beeson5, Lauren Ball5, Kristi Helke4, Shahid Husain6, Elizabeth Garrett-Mayer7, Gary Hardiman8, Meenal Mehrotra4
1Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
2Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
3Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
4Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
5Department of Pharmaceutical and Biomedical Sciences, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
6Department of Ophthalmology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
7Department of Public Health, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
8Department of Nephrology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA

Tài liệu tham khảo

Benjamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc. B, 57, 289 Bruzzone, 2009, Catastrophic NAD+ depletion in activated T lymphocytes through Nampt inhibition reduces demyelination and disability in EAE, PLoS One, 4, e7897, 10.1371/journal.pone.0007897 Buck, 2016, Mitochondrial dynamics controls T cell fate through metabolic programming, Cell, 166, 63, 10.1016/j.cell.2016.05.035 Buck, 2015, T cell metabolism drives immunity, J. Exp. Med., 212, 1345, 10.1084/jem.20151159 Camacho-Pereira, 2016, CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism, Cell Metab., 23, 1127, 10.1016/j.cmet.2016.05.006 Caro-Maldonado, 2012, Matched and mismatched metabolic fuels in lymphocyte function, Semin. Immunol., 24, 405, 10.1016/j.smim.2012.12.002 Chang, 2013, Posttranscriptional control of T cell effector function by aerobic glycolysis, Cell, 153, 1239, 10.1016/j.cell.2013.05.016 Chang, 2016, Emerging concepts of T cell metabolism as a target of immunotherapy, Nat. Immunol., 17, 364, 10.1038/ni.3415 Chatterjee, 2014, Reducing CD73 expression by IL1β-Programmed Th17 cells improves immunotherapeutic control of tumors, Cancer Res., 74, 6048, 10.1158/0008-5472.CAN-14-1450 Chen, 2009, ToppGene Suite for gene list enrichment analysis and candidate gene prioritization, Nucleic Acids Res., 37, W305, 10.1093/nar/gkp427 Chini, 2009, CD38 as a regulator of cellular NAD: a novel potential pharmacological target for metabolic conditions, Curr. Pharm. Des., 15, 57, 10.2174/138161209787185788 Crompton, 2014, Reprogramming antitumor immunity, Trends Immunol., 35, 178, 10.1016/j.it.2014.02.003 Daitoku, 2004, Silent information regulator 2 potentiates Foxo1-mediated transcription through its deacetylase activity, Proc. Natl. Acad. Sci. USA, 101, 10042, 10.1073/pnas.0400593101 Daitoku, 2011, Regulation of FoxO transcription factors by acetylation and protein-protein interactions, Biochim. Biophys. Acta, 1813, 1954, 10.1016/j.bbamcr.2011.03.001 Daitoku, 2003, Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR, Diabetes, 52, 642, 10.2337/diabetes.52.3.642 Doedens, 2013, Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen, Nat. Immunol., 14, 1173, 10.1038/ni.2714 Emtage, 2003, Generating potent Th1/Tc1 T cell adoptive immunotherapy doses using human IL-12: Harnessing the immunomodulatory potential of IL-12 without the in vivo-associated toxicity, J. Immunother., 26, 97, 10.1097/00002371-200303000-00002 Gerriets, 2015, Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation, J. Clin. Invest., 125, 194, 10.1172/JCI76012 Gubbels Bupp, 2009, T cells require Foxo1 to populate the peripheral lymphoid organs, Eur. J. Immunol., 39, 2991, 10.1002/eji.200939427 Harrington, 2008, Memory CD4 T cells emerge from effector T-cell progenitors, Nature, 452, 356, 10.1038/nature06672 Hess Michelini, 2013, Differentiation of CD8 memory T cells depends on Foxo1, J. Exp. Med., 210, 1189, 10.1084/jem.20130392 Jogl, 2004, Structure and function of carnitine acyltransferases, Ann. N. Y. Acad. Sci., 1033, 17, 10.1196/annals.1320.002 Kerkar, 2011, Genetic engineering of murine CD8+ and CD4+ T cells for preclinical adoptive immunotherapy studies, J. Immunother., 34, 343, 10.1097/CJI.0b013e3182187600 Klysz, 2015, Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation, Sci. Signal., 8, ra97, 10.1126/scisignal.aab2610 Koya, 2010, Kinetic phases of distribution and tumor targeting by T cell receptor engineered lymphocytes inducing robust antitumor responses, Proc. Natl. Acad. Sci. USA, 107, 14286, 10.1073/pnas.1008300107 Kryczek, 2011, Human TH17 cells are long-lived effector memory cells, Sci. Transl. Med., 3, 104ra100, 10.1126/scitranslmed.3002949 Le, 2012, Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells, Cell Metab., 15, 110, 10.1016/j.cmet.2011.12.009 Lee, 2012, Induction and molecular signature of pathogenic TH17 cells, Nat. Immunol., 13, 991, 10.1038/ni.2416 Li, 2013, SIRT1 and energy metabolism, Acta Biochim. Biophys. Sin. (Shanghai), 45, 51, 10.1093/abbs/gms108 Lord, 2005, T-bet is required for optimal proinflammatory CD4+ T-cell trafficking, Blood, 106, 3432, 10.1182/blood-2005-04-1393 Lu, 2012, Th9 cells promote antitumor immune responses in vivo, J. Clin. Invest., 122, 4160, 10.1172/JCI65459 Mehrotra, 2012, A coreceptor-independent transgenic human TCR mediates anti-tumor and anti-self immunity in mice, J. Immunol., 189, 1627, 10.4049/jimmunol.1103271 Meyerhof, 1951, Mechanisms of glycolysis and fermentation, Can. J. Med. Sci., 29, 63 Morandi, 2015, A non-canonical adenosinergic pathway led by CD38 in human melanoma cells induces suppression of T cell proliferation, Oncotarget, 6, 25602, 10.18632/oncotarget.4693 Mullen, 2002, Hlx is induced by and genetically interacts with T-bet to promote heritable T(H)1 gene induction, Nat. Immunol., 3, 652, 10.1038/ni807 Muranski, 2008, Tumor-specific Th17-polarized cells eradicate large established melanoma, Blood, 112, 362, 10.1182/blood-2007-11-120998 Muranski, 2011, Th17 cells are long lived and retain a stem cell-like molecular signature, Immunity, 35, 972, 10.1016/j.immuni.2011.09.019 Newsholme, 1985, Glutamine metabolism in lymphocytes: its biochemical, physiological and clinical importance, Q. J. Exp. Physiol., 70, 473, 10.1113/expphysiol.1985.sp002935 Pearce, 2007, Generation of CD8 T cell memory is regulated by IL-12, J. Immunol., 179, 2074, 10.4049/jimmunol.179.4.2074 Rao, 2012, Transcription factor Foxo1 represses T-bet-mediated effector functions and promotes memory CD8(+) T cell differentiation, Immunity, 36, 374, 10.1016/j.immuni.2012.01.015 Redeker, 2016, Improving Adoptive T Cell Therapy: The Particular Role of T Cell Costimulation, Cytokines, and Post-Transfer Vaccination, Front. Immunol., 7, 345, 10.3389/fimmu.2016.00345 Rodgers, 2005, Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1, Nature, 434, 113, 10.1038/nature03354 Rolf, 2013, AMPKα1: a glucose sensor that controls CD8 T-cell memory, Eur. J. Immunol., 43, 889, 10.1002/eji.201243008 Rosenberg, 2015, Adoptive cell transfer as personalized immunotherapy for human cancer, Science, 348, 62, 10.1126/science.aaa4967 Sásik, 2004, Microarray truths and consequences, J. Mol. Endocrinol., 33, 1, 10.1677/jme.0.0330001 Scharping, 2016, The Tumor Microenvironment Represses T Cell Mitochondrial Biogenesis to Drive Intratumoral T Cell Metabolic Insufficiency and Dysfunction, Immunity, 45, 374, 10.1016/j.immuni.2016.07.009 Shi, 2011, HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells, J. Exp. Med., 208, 1367, 10.1084/jem.20110278 Staveley-O’Carroll, 2003, In vivo ligation of CD40 enhances priming against the endogenous tumor antigen and promotes CD8+ T cell effector function in SV40 T antigen transgenic mice, J. Immunol., 171, 697, 10.4049/jimmunol.171.2.697 Sukumar, 2013, Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function, J. Clin. Invest., 123, 4479, 10.1172/JCI69589 Terme, 2011, IL-18 induces PD-1-dependent immunosuppression in cancer, Cancer Res., 71, 5393, 10.1158/0008-5472.CAN-11-0993 Tsung, 1997, IL-12 induces T helper 1-directed antitumor response, J. Immunol., 158, 3359, 10.4049/jimmunol.158.7.3359 Tullius, 2014, NAD+ protects against EAE by regulating CD4+ T-cell differentiation, Nat. Commun., 5, 5101, 10.1038/ncomms6101 Tusher, 2001, Significance analysis of microarrays applied to the ionizing radiation response, Proc. Natl. Acad. Sci. USA, 98, 5116, 10.1073/pnas.091062498 van der Windt, 2012, Metabolic switching and fuel choice during T-cell differentiation and memory development, Immunol. Rev., 249, 27, 10.1111/j.1600-065X.2012.01150.x Wei, 2012, Th17 cells have stem cell-like features and promote long-term immunity, OncoImmunology, 1, 516, 10.4161/onci.19440 Yu, 1999, Glutamine: a precursor of glutathione and its effect on liver, World J. Gastroenterol., 5, 143, 10.3748/wjg.v5.i2.143 Yu, 2013, Adoptive transfer of Tc1 or Tc17 cells elicits antitumor immunity against established melanoma through distinct mechanisms, J. Immunol., 190, 1873, 10.4049/jimmunol.1201989 Zhang, 2010, SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions, Biochim. Biophys. Acta, 1804, 1666, 10.1016/j.bbapap.2009.10.022