Các tế bào lưu thông CD34+ cho thấy dấu hiệu kích hoạt miễn dịch ở bệnh nhân hội chứng vành cấp tính

Springer Science and Business Media LLC - Tập 33 - Trang 1559-1569 - 2018
Lisa Riesinger1, Michael Saemisch1,2, Markus Nickmann3, Heiko Methe1,3,4
1Department of Cardiology, Ludwig-Maximilians-University Munich, Munich, Germany
2Department of Internal Medicine, Kliniken Neumarkt, Neumarkt, Germany
3Department of Internal Medicine/Cardiology, Kliniken an der Paar, Aichach, Germany
4Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, USA

Tóm tắt

Các tế bào tiền thân nội mạch (EPC) lấy từ tủy xương được phóng thích vào máu ngoại vi trong các tình huống tái tạo mạch máu/angiogenesis. Sự điều hòa của tái tạo mạch máu và angiogenesis bởi EPC không chỉ phụ thuộc vào số lượng EPC lưu thông mà còn vào chức năng của chúng. Do các tế bào nội mạch có thể đóng vai trò là các tế bào trình diện kháng nguyên trong bệnh động mạch vành (CAD), chúng tôi đưa ra giả thuyết rằng EPC cũng có thể được kích hoạt miễn dịch ở đây. CD34+-EPC đã được tách ra từ máu ngoại vi của các bệnh nhân mắc nhồi máu cơ tim ST đoạn chênh lên (STEMI, n = 12), nhồi máu cơ tim không ST đoạn chênh lên/cơn đau thắt ngực không ổn định (UA, n = 15), và CAD ổn định (SA, n = 18). Sự biểu hiện của HLA-DR, các phân tử bám dính và đồng kích thích của CD34+-EPC đã được so sánh với các nhóm đối chứng khỏe mạnh (n = 18). Không có sự khác biệt đáng kể nào trong biểu hiện VCAM-1 và CD80 của CD34+-EPC lưu thông ngoại vi giữa bốn nhóm, tuy nhiên sự biểu hiện của CD86 cao nhất ở UA (p < 0.05). Biểu hiện ICAM-1 thấp nhất ở SA (p < 0.01). CD34+-EPC đã biểu hiện HLA-DR một cách liên tục ở tất cả các nhóm. Đáng chú ý, các bệnh nhân được điều trị trước bằng thuốc ức chế HMG-CoA reductase cho thấy biểu hiện thấp hơn của VCAM-1 bởi CD34+-EPC trong tất cả các nhóm bệnh nhân; hơn nữa, statin đã giới hạn đáng kể sự tăng cường ICAM-1 được kích thích ex vivo bởi TNF-alpha. Theo kiến thức của chúng tôi, đây là nghiên cứu đầu tiên kiểm tra sự biểu hiện của các dấu hiệu miễn dịch trong CD34+-EPC lưu thông ngoại vi ex vivo. Chúng tôi cho thấy rằng CD34+-EPC thể hiện các mẫu khác nhau của các phân tử bám dính và đồng kích thích trong các trạng thái khác nhau của CAD. Mức độ biểu hiện bị ảnh hưởng bởi việc điều trị trước bằng statin. Do đó, hoạt động miễn dịch của các tế bào CD34+ lưu thông ngoại vi có thể đóng một vai trò sinh lý bệnh trong sự tiến triển của CAD.

Từ khóa

#EPC #HLA-DR #CD34+ #miễn dịch #CAD #thương tổn mạch máu

Tài liệu tham khảo

Michiels C (2003) Endothelial cell functions. J Cell Physiol 196:430–443 Ribatti D, Nico B, Vacca A, Roncali L, Dammacco F (2002) Endothelial cell heterogeneity and organ specificity. J Hematother Stem Cell Res 11:81–90 Rubanyi GM (1993) The role of endothelium in cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol 22(Suppl 4):S1–14 Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561 Anter E, Chen K, Shapira OM, Karas RH, Keaney JF Jr (2005) p38 mitogen-activated protein kinase activates eNOS in endothelial cells by an estrogen receptor alpha-dependent pathway in response to black tea polyphenols. Circ Res 96:1072–1078 Upchurch GR Jr, Welch GN, Freedman JE, Fabian AJ, Pigazzi A, Scribner AM, Alpert CS, Keaney JF Jr, Loscalzo J (1997) High-dose heparin decreases nitric oxide production by cultured bovine endothelial cells. Circulation 95:2115–2121 Ando J, Kamiya A (1993) Blood flow and vascular endothelial cell function. Front Med Biol Eng 5:245–264 Aird WC, Edelberg JM, Weiler-Guettler H, Simmons WW, Smith TW, Rosenberg RD (1997) Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol 138:1117–1124 Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126 Schwartz RS (1998) Pathophysiology of restenosis: interaction of thrombosis, hyperplasia, and/or remodeling. Am J Cardiol 81:14E–17E Rogers C, Parikh S, Seifert P, Edelman ER (1996) Endogenous cell seeding. Remnant endothelium after stenting enhances vascular repair. Circulation 94:2909–2914 Hirsch EZ, Chisolm GM 3rd, White HM (1983) Reendothelialization and maintenance of endothelial integrity in longitudinal denuded tracks in the thoracic aorta of rats. Atherosclerosis 46:287–307 Reidy MA, Bowyer DE (1978) Distortion of endothelial repair. The effect of hypercholesterolaemia on regeneration of aortic endothelium following injury by endotoxin. A scanning electron microscope study. Atherosclerosis 29:459–466 Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967 Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438 Epstein SE, Stabile E, Kinnaird T, Lee CW, Clavijo L, Burnett MS (2004) Janus phenomenon: the interrelated tradeoffs inherent in therapies designed to enhance collateral formation and those designed to inhibit atherogenesis. Circulation 109:2826–2831 Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007 Schwartzenberg S, Deutsch V, Maysel-Auslender S, Kissil S, Keren G, George J (2007) Circulating apoptotic progenitor cells: a novel biomarker in patients with acute coronary syndromes. Arterioscler Thromb Vasc Biol 27:e27–e31 Vartanian KB, Berny MA, McCarty OJ, Hanson SR, Hinds MT (2010) Cytoskeletal structure regulates endothelial cell immunogenicity independent of fluid shear stress. Am J Physiol Cell Physiol 298:C333–C341 Nickmann M, Saemisch M, Wilbert-Lampen U, Nickel T, Edelman ER, Methe H (2013) Cell matrix contact modifies endothelial major histocompatibility complex class II expression in high-glucose environment. Am J Physiol Heart Circ Physiol 305:H1592–H1599 Hess S, Methe H, Kim JO, Edelman ER (2009) NF-kappaB activity in endothelial cells is modulated by cell substratum interactions and influences chemokine-mediated adhesion of natural killer cells. Cell Transplant 18:261–273 Methe H, Hess S, Edelman ER (2007) Endothelial cell-matrix interactions determine maturation of dendritic cells. Eur J Immunol 37:1773–1784 Zani BG, Kojima K, Vacanti CA, Edelman ER (2008) Tissue-engineered endothelial and epithelial implants differentially and synergistically regulate airway repair. Proc Natl Acad Sci USA 105:7046–7051 Costa LF, Balcells M, Edelman ER, Nadler LM, Cardoso AA (2006) Proangiogenic stimulation of bone marrow endothelium engages mTOR and is inhibited by simultaneous blockade of mTOR and NF-kappaB. Blood 107:285–292 Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Ting HH, O’Gara PT, Kushner FG, Ascheim DD, Brindis RG, Casey DE Jr, Chung MK, de Lemos JA, Diercks DB, Fang JC, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX (2016) 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction: a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 133:1135–1147 Richter G, Hayden-Ledbetter M, Irgang M, Ledbetter JA, Westermann J, Korner I, Daemen K, Clark EA, Aicher A, Pezzutto A (2001) Tumor necrosis factor-alpha regulates the expression of inducible costimulator receptor ligand on CD34(+) progenitor cells during differentiation into antigen presenting cells. J Biol Chem 276:45686–45693 Ryncarz RE, Anasetti C (1998) Expression of CD86 on human marrow CD34(+) cells identifies immunocompetent committed precursors of macrophages and dendritic cells. Blood 91:3892–3900 Zeng W, Miyazato A, Chen G, Kajigaya S, Young NS, Maciejewski JP (2006) Interferon-gamma-induced gene expression in CD34 cells: identification of pathologic cytokine-specific signature profiles. Blood 107:167–175 Umland O, Heine H, Miehe M, Marienfeld K, Staubach KH, Ulmer AJ (2004) Induction of various immune modulatory molecules in CD34(+) hematopoietic cells. J Leukoc Biol 75:671–679 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408 Fina L, Molgaard HV, Robertson D, Bradley NJ, Monaghan P, Delia D, Sutherland DR, Baker MA, Greaves MF (1990) Expression of the CD34 gene in vascular endothelial cells. Blood 75:2417–2426 Hristov M, Weber C (2008) Endothelial progenitor cells in vascular repair and remodeling. Pharmacol Res 58:148–151 Brenes RA, Bear M, Jadlowiec C, Goodwin M, Hashim P, Protack CD, Ziegler KR, Li X, Model LS, Lv W, Collins MJ, Dardik A (2012) Cell-based interventions for therapeutic angiogenesis: review of potential cell sources. Vascular 20:360–368 Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448 Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600 Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, Wang T, Gregg D, Ramaswami P, Pippen AM, Annex BH, Dong C, Taylor DA (2003) Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108:457–463 Cohen KS, Cheng S, Larson MG, Cupples LA, McCabe EL, Wang YA, Ngwa JS, Martin RP, Klein RJ, Hashmi B, Ge Y, O’Donnell CJ, Vasan RS, Shaw SY, Wang TJ (2013) Circulating CD34(+) progenitor cell frequency is associated with clinical and genetic factors. Blood 121:e50–e56 Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110:624–637 Massa M, Rosti V, Ferrario M, Campanelli R, Ramajoli I, Rosso R, De Ferrari GM, Ferlini M, Goffredo L, Bertoletti A, Klersy C, Pecci A, Moratti R, Tavazzi L (2005) Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105:199–206 Cuadrado-Godia E, Regueiro A, Nunez J, Diaz-Ricard M, Novella S, Oliveras A, Valverde MA, Marrugat J, Ois A, Giralt-Steinhauer E, Sanchis J, Escolar G, Hermenegildo C, Heras M, Roquer J (2015) Endothelial progenitor cells predict cardiovascular events after atherothrombotic stroke and acute myocardial infarction. A PROCELL Substudy. PLoS One 10:e0132415 Mourino-Alvarez L, Calvo E, Moreu J, Padial LR, Lopez JA, Barderas MG, Gil-Dones F (2013) Proteomic characterization of EPCs and CECs “in vivo” from acute coronary syndrome patients and control subjects. Biochim Biophys Acta 1830:3030–3053 Gil-Dones F, Darde VM, Alonso-Orgaz S, Lopez-Almodovar LF, Mourino-Alvarez L, Padial LR, Vivanco F, Barderas MG (2012) Inside human aortic stenosis: a proteomic analysis of plasma. J Proteom 75:1639–1653 Darde VM, de la Cuesta F, Dones FG, Alvarez-Llamas G, Barderas MG, Vivanco F (2010) Analysis of the plasma proteome associated with acute coronary syndrome: does a permanent protein signature exist in the plasma of ACS patients? J Proteome Res 9:4420–4432 Methe H, Edelman ER (2006) Cell-matrix contact prevents recognition and damage of endothelial cells in states of heightened immunity. Circulation 114:I233–I238 Methe H, Hess S, Edelman ER (2008) The effect of three-dimensional matrix-embedding of endothelial cells on the humoral and cellular immune response. Semin Immunol 20:117–122 Methe H, Nugent HM, Groothuis A, Seifert P, Sayegh MH, Edelman ER (2005) Matrix embedding alters the immune response against endothelial cells in vitro and in vivo. Circulation 112:I89–I95 Sandhu K, Mamas M, Butler R (2017) Endothelial progenitor cells: exploring the pleiotropic effects of statins. World J Cardiol 9:1–13 Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397 Hansson GK, Libby P, Schonbeck U, Yan ZQ (2002) Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 91:281–291 Sayegh MH, Turka LA (1998) The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med 338:1813–1821 Seino K, Azuma M, Bashuda H, Fukao K, Yagita H, Okumura K (1995) CD86 (B70/B7-2) on endothelial cells co-stimulates allogeneic CD4+ T cells. Int Immunol 7:1331–1337 Maher SE, Karmann K, Min W, Hughes CC, Pober JS, Bothwell AL (1996) Porcine endothelial CD86 is a major costimulator of xenogeneic human T cells: cloning, sequencing, and functional expression in human endothelial cells. J Immunol 157:3838–3844 Pober JS, Gimbrone MA Jr, Collins T, Cotran RS, Ault KA, Fiers W, Krensky AM, Clayberger C, Reiss CS, Burakoff SJ (1984) Interactions of T lymphocytes with human vascular endothelial cells: role of endothelial cells surface antigens. Immunobiology 168:483–494 Wu Y, Ip JE, Huang J, Zhang L, Matsushita K, Liew CC, Pratt RE, Dzau VJ (2006) Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ Res 99:315–322 Langer H, May AE, Daub K, Heinzmann U, Lang P, Schumm M, Vestweber D, Massberg S, Schonberger T, Pfisterer I, Hatzopoulos AK, Gawaz M (2006) Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ Res 98:e2–10 Chavakis E, Aicher A, Heeschen C, Sasaki K, Kaiser R, El Makhfi N, Urbich C, Peters T, Scharffetter-Kochanek K, Zeiher AM, Chavakis T, Dimmeler S (2005) Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 201:63–72 Goon PK, Lip GY, Boos CJ, Stonelake PS, Blann AD (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8:79–88 O’Brien KD, Allen MD, McDonald TO, Chait A, Harlan JM, Fishbein D, McCarty J, Ferguson M, Hudkins K, Benjamin CD et al (1993) Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest 92:945–951 Ley K, Huo Y (2001) VCAM-1 is critical in atherosclerosis. J Clin Invest 107:1209–1210 Werner N, Priller J, Laufs U, Endres M, Bohm M, Dirnagl U, Nickenig G (2002) Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol 22:1567–1572 Oesterle A, Laufs U, Liao JK (2017) Pleiotropic effects of statins on the cardiovascular system. Circ Res 120:229–243 Methe H, Kim JO, Kofler S, Nabauer M, Weis M (2005) Statins decrease Toll-like receptor 4 expression and downstream signaling in human CD14+ monocytes. Arterioscler Thromb Vasc Biol 25:1439–1445 Solheim S, Seljeflot I, Arnesen H, Eritsland J, Eikvar L (2001) Reduced levels of TNF alpha in hypercholesterolemic individuals after treatment with pravastatin for 8 weeks. Atherosclerosis 157:411–415 Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M (2008) Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis 198:347–353 Yoder MC (2012) Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2:a006692 Fadini GP, de Kreutzenberg SV, Coracina A, Baesso I, Agostini C, Tiengo A, Avogaro A (2006) Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur Heart J 27:2247–2255 Fadini GP, Maruyama S, Ozaki T, Taguchi A, Meigs J, Dimmeler S, Zeiher AM, de Kreutzenberg S, Avogaro A, Nickenig G, Schmidt-Lucke C, Werner N (2010) Circulating progenitor cell count for cardiovascular risk stratification: a pooled analysis. PLoS One 5:e11488 Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7 Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353 Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A (2008) Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197:496–503 Keymel S, Kalka C, Rassaf T, Yeghiazarians Y, Kelm M, Heiss C (2008) Impaired endothelial progenitor cell function predicts age-dependent carotid intimal thickening. Basic Res Cardiol 103:582–586 Scheubel RJ, Zorn H, Silber RE, Kuss O, Morawietz H, Holtz J, Simm A (2003) Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol 42:2073–2080