Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các tế bào lưu thông CD34+ cho thấy dấu hiệu kích hoạt miễn dịch ở bệnh nhân hội chứng vành cấp tính
Tóm tắt
Các tế bào tiền thân nội mạch (EPC) lấy từ tủy xương được phóng thích vào máu ngoại vi trong các tình huống tái tạo mạch máu/angiogenesis. Sự điều hòa của tái tạo mạch máu và angiogenesis bởi EPC không chỉ phụ thuộc vào số lượng EPC lưu thông mà còn vào chức năng của chúng. Do các tế bào nội mạch có thể đóng vai trò là các tế bào trình diện kháng nguyên trong bệnh động mạch vành (CAD), chúng tôi đưa ra giả thuyết rằng EPC cũng có thể được kích hoạt miễn dịch ở đây. CD34+-EPC đã được tách ra từ máu ngoại vi của các bệnh nhân mắc nhồi máu cơ tim ST đoạn chênh lên (STEMI, n = 12), nhồi máu cơ tim không ST đoạn chênh lên/cơn đau thắt ngực không ổn định (UA, n = 15), và CAD ổn định (SA, n = 18). Sự biểu hiện của HLA-DR, các phân tử bám dính và đồng kích thích của CD34+-EPC đã được so sánh với các nhóm đối chứng khỏe mạnh (n = 18). Không có sự khác biệt đáng kể nào trong biểu hiện VCAM-1 và CD80 của CD34+-EPC lưu thông ngoại vi giữa bốn nhóm, tuy nhiên sự biểu hiện của CD86 cao nhất ở UA (p < 0.05). Biểu hiện ICAM-1 thấp nhất ở SA (p < 0.01). CD34+-EPC đã biểu hiện HLA-DR một cách liên tục ở tất cả các nhóm. Đáng chú ý, các bệnh nhân được điều trị trước bằng thuốc ức chế HMG-CoA reductase cho thấy biểu hiện thấp hơn của VCAM-1 bởi CD34+-EPC trong tất cả các nhóm bệnh nhân; hơn nữa, statin đã giới hạn đáng kể sự tăng cường ICAM-1 được kích thích ex vivo bởi TNF-alpha. Theo kiến thức của chúng tôi, đây là nghiên cứu đầu tiên kiểm tra sự biểu hiện của các dấu hiệu miễn dịch trong CD34+-EPC lưu thông ngoại vi ex vivo. Chúng tôi cho thấy rằng CD34+-EPC thể hiện các mẫu khác nhau của các phân tử bám dính và đồng kích thích trong các trạng thái khác nhau của CAD. Mức độ biểu hiện bị ảnh hưởng bởi việc điều trị trước bằng statin. Do đó, hoạt động miễn dịch của các tế bào CD34+ lưu thông ngoại vi có thể đóng một vai trò sinh lý bệnh trong sự tiến triển của CAD.
Từ khóa
#EPC #HLA-DR #CD34+ #miễn dịch #CAD #thương tổn mạch máuTài liệu tham khảo
Michiels C (2003) Endothelial cell functions. J Cell Physiol 196:430–443
Ribatti D, Nico B, Vacca A, Roncali L, Dammacco F (2002) Endothelial cell heterogeneity and organ specificity. J Hematother Stem Cell Res 11:81–90
Rubanyi GM (1993) The role of endothelium in cardiovascular homeostasis and diseases. J Cardiovasc Pharmacol 22(Suppl 4):S1–14
Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561
Anter E, Chen K, Shapira OM, Karas RH, Keaney JF Jr (2005) p38 mitogen-activated protein kinase activates eNOS in endothelial cells by an estrogen receptor alpha-dependent pathway in response to black tea polyphenols. Circ Res 96:1072–1078
Upchurch GR Jr, Welch GN, Freedman JE, Fabian AJ, Pigazzi A, Scribner AM, Alpert CS, Keaney JF Jr, Loscalzo J (1997) High-dose heparin decreases nitric oxide production by cultured bovine endothelial cells. Circulation 95:2115–2121
Ando J, Kamiya A (1993) Blood flow and vascular endothelial cell function. Front Med Biol Eng 5:245–264
Aird WC, Edelberg JM, Weiler-Guettler H, Simmons WW, Smith TW, Rosenberg RD (1997) Vascular bed-specific expression of an endothelial cell gene is programmed by the tissue microenvironment. J Cell Biol 138:1117–1124
Ross R (1999) Atherosclerosis—an inflammatory disease. N Engl J Med 340:115–126
Schwartz RS (1998) Pathophysiology of restenosis: interaction of thrombosis, hyperplasia, and/or remodeling. Am J Cardiol 81:14E–17E
Rogers C, Parikh S, Seifert P, Edelman ER (1996) Endogenous cell seeding. Remnant endothelium after stenting enhances vascular repair. Circulation 94:2909–2914
Hirsch EZ, Chisolm GM 3rd, White HM (1983) Reendothelialization and maintenance of endothelial integrity in longitudinal denuded tracks in the thoracic aorta of rats. Atherosclerosis 46:287–307
Reidy MA, Bowyer DE (1978) Distortion of endothelial repair. The effect of hypercholesterolaemia on regeneration of aortic endothelium following injury by endotoxin. A scanning electron microscope study. Atherosclerosis 29:459–466
Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967
Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438
Epstein SE, Stabile E, Kinnaird T, Lee CW, Clavijo L, Burnett MS (2004) Janus phenomenon: the interrelated tradeoffs inherent in therapies designed to enhance collateral formation and those designed to inhibit atherogenesis. Circulation 109:2826–2831
Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007
Schwartzenberg S, Deutsch V, Maysel-Auslender S, Kissil S, Keren G, George J (2007) Circulating apoptotic progenitor cells: a novel biomarker in patients with acute coronary syndromes. Arterioscler Thromb Vasc Biol 27:e27–e31
Vartanian KB, Berny MA, McCarty OJ, Hanson SR, Hinds MT (2010) Cytoskeletal structure regulates endothelial cell immunogenicity independent of fluid shear stress. Am J Physiol Cell Physiol 298:C333–C341
Nickmann M, Saemisch M, Wilbert-Lampen U, Nickel T, Edelman ER, Methe H (2013) Cell matrix contact modifies endothelial major histocompatibility complex class II expression in high-glucose environment. Am J Physiol Heart Circ Physiol 305:H1592–H1599
Hess S, Methe H, Kim JO, Edelman ER (2009) NF-kappaB activity in endothelial cells is modulated by cell substratum interactions and influences chemokine-mediated adhesion of natural killer cells. Cell Transplant 18:261–273
Methe H, Hess S, Edelman ER (2007) Endothelial cell-matrix interactions determine maturation of dendritic cells. Eur J Immunol 37:1773–1784
Zani BG, Kojima K, Vacanti CA, Edelman ER (2008) Tissue-engineered endothelial and epithelial implants differentially and synergistically regulate airway repair. Proc Natl Acad Sci USA 105:7046–7051
Costa LF, Balcells M, Edelman ER, Nadler LM, Cardoso AA (2006) Proangiogenic stimulation of bone marrow endothelium engages mTOR and is inhibited by simultaneous blockade of mTOR and NF-kappaB. Blood 107:285–292
Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, Chambers CE, Ellis SG, Guyton RA, Hollenberg SM, Khot UN, Lange RA, Mauri L, Mehran R, Moussa ID, Mukherjee D, Ting HH, O’Gara PT, Kushner FG, Ascheim DD, Brindis RG, Casey DE Jr, Chung MK, de Lemos JA, Diercks DB, Fang JC, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woo YJ, Zhao DX (2016) 2015 ACC/AHA/SCAI focused update on primary percutaneous coronary intervention for patients with ST-elevation myocardial infarction: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention and the 2013 ACCF/AHA Guideline for the Management of ST-Elevation Myocardial Infarction: a Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. Circulation 133:1135–1147
Richter G, Hayden-Ledbetter M, Irgang M, Ledbetter JA, Westermann J, Korner I, Daemen K, Clark EA, Aicher A, Pezzutto A (2001) Tumor necrosis factor-alpha regulates the expression of inducible costimulator receptor ligand on CD34(+) progenitor cells during differentiation into antigen presenting cells. J Biol Chem 276:45686–45693
Ryncarz RE, Anasetti C (1998) Expression of CD86 on human marrow CD34(+) cells identifies immunocompetent committed precursors of macrophages and dendritic cells. Blood 91:3892–3900
Zeng W, Miyazato A, Chen G, Kajigaya S, Young NS, Maciejewski JP (2006) Interferon-gamma-induced gene expression in CD34 cells: identification of pathologic cytokine-specific signature profiles. Blood 107:167–175
Umland O, Heine H, Miehe M, Marienfeld K, Staubach KH, Ulmer AJ (2004) Induction of various immune modulatory molecules in CD34(+) hematopoietic cells. J Leukoc Biol 75:671–679
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408
Fina L, Molgaard HV, Robertson D, Bradley NJ, Monaghan P, Delia D, Sutherland DR, Baker MA, Greaves MF (1990) Expression of the CD34 gene in vascular endothelial cells. Blood 75:2417–2426
Hristov M, Weber C (2008) Endothelial progenitor cells in vascular repair and remodeling. Pharmacol Res 58:148–151
Brenes RA, Bear M, Jadlowiec C, Goodwin M, Hashim P, Protack CD, Ziegler KR, Li X, Model LS, Lv W, Collins MJ, Dardik A (2012) Cell-based interventions for therapeutic angiogenesis: review of potential cell sources. Vascular 20:360–368
Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448
Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600
Rauscher FM, Goldschmidt-Clermont PJ, Davis BH, Wang T, Gregg D, Ramaswami P, Pippen AM, Annex BH, Dong C, Taylor DA (2003) Aging, progenitor cell exhaustion, and atherosclerosis. Circulation 108:457–463
Cohen KS, Cheng S, Larson MG, Cupples LA, McCabe EL, Wang YA, Ngwa JS, Martin RP, Klein RJ, Hashmi B, Ge Y, O’Donnell CJ, Vasan RS, Shaw SY, Wang TJ (2013) Circulating CD34(+) progenitor cell frequency is associated with clinical and genetic factors. Blood 121:e50–e56
Fadini GP, Losordo D, Dimmeler S (2012) Critical reevaluation of endothelial progenitor cell phenotypes for therapeutic and diagnostic use. Circ Res 110:624–637
Massa M, Rosti V, Ferrario M, Campanelli R, Ramajoli I, Rosso R, De Ferrari GM, Ferlini M, Goffredo L, Bertoletti A, Klersy C, Pecci A, Moratti R, Tavazzi L (2005) Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood 105:199–206
Cuadrado-Godia E, Regueiro A, Nunez J, Diaz-Ricard M, Novella S, Oliveras A, Valverde MA, Marrugat J, Ois A, Giralt-Steinhauer E, Sanchis J, Escolar G, Hermenegildo C, Heras M, Roquer J (2015) Endothelial progenitor cells predict cardiovascular events after atherothrombotic stroke and acute myocardial infarction. A PROCELL Substudy. PLoS One 10:e0132415
Mourino-Alvarez L, Calvo E, Moreu J, Padial LR, Lopez JA, Barderas MG, Gil-Dones F (2013) Proteomic characterization of EPCs and CECs “in vivo” from acute coronary syndrome patients and control subjects. Biochim Biophys Acta 1830:3030–3053
Gil-Dones F, Darde VM, Alonso-Orgaz S, Lopez-Almodovar LF, Mourino-Alvarez L, Padial LR, Vivanco F, Barderas MG (2012) Inside human aortic stenosis: a proteomic analysis of plasma. J Proteom 75:1639–1653
Darde VM, de la Cuesta F, Dones FG, Alvarez-Llamas G, Barderas MG, Vivanco F (2010) Analysis of the plasma proteome associated with acute coronary syndrome: does a permanent protein signature exist in the plasma of ACS patients? J Proteome Res 9:4420–4432
Methe H, Edelman ER (2006) Cell-matrix contact prevents recognition and damage of endothelial cells in states of heightened immunity. Circulation 114:I233–I238
Methe H, Hess S, Edelman ER (2008) The effect of three-dimensional matrix-embedding of endothelial cells on the humoral and cellular immune response. Semin Immunol 20:117–122
Methe H, Nugent HM, Groothuis A, Seifert P, Sayegh MH, Edelman ER (2005) Matrix embedding alters the immune response against endothelial cells in vitro and in vivo. Circulation 112:I89–I95
Sandhu K, Mamas M, Butler R (2017) Endothelial progenitor cells: exploring the pleiotropic effects of statins. World J Cardiol 9:1–13
Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397
Hansson GK, Libby P, Schonbeck U, Yan ZQ (2002) Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res 91:281–291
Sayegh MH, Turka LA (1998) The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med 338:1813–1821
Seino K, Azuma M, Bashuda H, Fukao K, Yagita H, Okumura K (1995) CD86 (B70/B7-2) on endothelial cells co-stimulates allogeneic CD4+ T cells. Int Immunol 7:1331–1337
Maher SE, Karmann K, Min W, Hughes CC, Pober JS, Bothwell AL (1996) Porcine endothelial CD86 is a major costimulator of xenogeneic human T cells: cloning, sequencing, and functional expression in human endothelial cells. J Immunol 157:3838–3844
Pober JS, Gimbrone MA Jr, Collins T, Cotran RS, Ault KA, Fiers W, Krensky AM, Clayberger C, Reiss CS, Burakoff SJ (1984) Interactions of T lymphocytes with human vascular endothelial cells: role of endothelial cells surface antigens. Immunobiology 168:483–494
Wu Y, Ip JE, Huang J, Zhang L, Matsushita K, Liew CC, Pratt RE, Dzau VJ (2006) Essential role of ICAM-1/CD18 in mediating EPC recruitment, angiogenesis, and repair to the infarcted myocardium. Circ Res 99:315–322
Langer H, May AE, Daub K, Heinzmann U, Lang P, Schumm M, Vestweber D, Massberg S, Schonberger T, Pfisterer I, Hatzopoulos AK, Gawaz M (2006) Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ Res 98:e2–10
Chavakis E, Aicher A, Heeschen C, Sasaki K, Kaiser R, El Makhfi N, Urbich C, Peters T, Scharffetter-Kochanek K, Zeiher AM, Chavakis T, Dimmeler S (2005) Role of beta2-integrins for homing and neovascularization capacity of endothelial progenitor cells. J Exp Med 201:63–72
Goon PK, Lip GY, Boos CJ, Stonelake PS, Blann AD (2006) Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia 8:79–88
O’Brien KD, Allen MD, McDonald TO, Chait A, Harlan JM, Fishbein D, McCarty J, Ferguson M, Hudkins K, Benjamin CD et al (1993) Vascular cell adhesion molecule-1 is expressed in human coronary atherosclerotic plaques. Implications for the mode of progression of advanced coronary atherosclerosis. J Clin Invest 92:945–951
Ley K, Huo Y (2001) VCAM-1 is critical in atherosclerosis. J Clin Invest 107:1209–1210
Werner N, Priller J, Laufs U, Endres M, Bohm M, Dirnagl U, Nickenig G (2002) Bone marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation: effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol 22:1567–1572
Oesterle A, Laufs U, Liao JK (2017) Pleiotropic effects of statins on the cardiovascular system. Circ Res 120:229–243
Methe H, Kim JO, Kofler S, Nabauer M, Weis M (2005) Statins decrease Toll-like receptor 4 expression and downstream signaling in human CD14+ monocytes. Arterioscler Thromb Vasc Biol 25:1439–1445
Solheim S, Seljeflot I, Arnesen H, Eritsland J, Eikvar L (2001) Reduced levels of TNF alpha in hypercholesterolemic individuals after treatment with pravastatin for 8 weeks. Atherosclerosis 157:411–415
Satoh M, Ishikawa Y, Takahashi Y, Itoh T, Minami Y, Nakamura M (2008) Association between oxidative DNA damage and telomere shortening in circulating endothelial progenitor cells obtained from metabolic syndrome patients with coronary artery disease. Atherosclerosis 198:347–353
Yoder MC (2012) Human endothelial progenitor cells. Cold Spring Harb Perspect Med 2:a006692
Fadini GP, de Kreutzenberg SV, Coracina A, Baesso I, Agostini C, Tiengo A, Avogaro A (2006) Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. Eur Heart J 27:2247–2255
Fadini GP, Maruyama S, Ozaki T, Taguchi A, Meigs J, Dimmeler S, Zeiher AM, de Kreutzenberg S, Avogaro A, Nickenig G, Schmidt-Lucke C, Werner N (2010) Circulating progenitor cell count for cardiovascular risk stratification: a pooled analysis. PLoS One 5:e11488
Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S (2001) Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res 89:E1–E7
Urbich C, Dimmeler S (2004) Endothelial progenitor cells: characterization and role in vascular biology. Circ Res 95:343–353
Fadini GP, Baesso I, Albiero M, Sartore S, Agostini C, Avogaro A (2008) Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197:496–503
Keymel S, Kalka C, Rassaf T, Yeghiazarians Y, Kelm M, Heiss C (2008) Impaired endothelial progenitor cell function predicts age-dependent carotid intimal thickening. Basic Res Cardiol 103:582–586
Scheubel RJ, Zorn H, Silber RE, Kuss O, Morawietz H, Holtz J, Simm A (2003) Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. J Am Coll Cardiol 42:2073–2080