CD14 regulates the metabolomic profiles of distinct macrophage subsets under steady and activated states

Immunobiology - Tập 227 - Trang 152191 - 2022
Luana Henrique de Macedo1, Camila Oliveira Silva Souza1, Luiz Gustavo Gardinassi1,2, Lúcia Helena Faccioli1
1Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
2Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil

Tài liệu tham khảo

Abuawad, 2020, Metabolic characterisation of THP-1 macrophage polarisation using LC–MS-based metabolite profiling, Metabolomics, 16, 33, 10.1007/s11306-020-01656-4 Albina, 1989, Regulation of macrophage functions by L-arginine, J. Exp. Med., 169, 1021, 10.1084/jem.169.3.1021 Alqarni, 2019, Metabolomic profiling of the immune stimulatory effect of eicosenoids on PMA-differentiated THP-1 cells, Vaccines, 7, 142, 10.3390/vaccines7040142 Bordbar, 2012, Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation, Mol. Syst. Biol., 8, 558, 10.1038/msb.2012.21 Cameron, 2019, Inflammatory macrophage dependence on NAD+ salvage is a consequence of reactive oxygen species-mediated DNA damage, Nat. Immunol., 20, 420, 10.1038/s41590-019-0336-y Chambers, 2012, A cross-platform toolkit for mass spectrometry and proteomics, Nat. Biotechnol., 30, 918, 10.1038/nbt.2377 Cui, 2021, Selenomethionine ameliorates LPS-induced intestinal immune dysfunction in chicken jejunum, Met. Integr. Biometal Sci., 13, mfab003, 10.1093/mtomcs/mfab003 Davies, 2011, A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation, Eur. J. Immunol., 41, 2155, 10.1002/eji.201141817 Fall, 2020, Metabolic reprograming of LPS-stimulated human lung macrophages involves tryptophan metabolism and the aspartate-arginosuccinate shunt, PLOS ONE, 15, e0230813, 10.1371/journal.pone.0230813 Fernández-Real, 2011, CD14 modulates inflammation-driven insulin resistance, Diabetes, 60, 2179, 10.2337/db10-1210 Freemerman, 2014, Metabolic reprogramming of macrophages: glucose transporter 1 (GLUT1)-mediated glucose metabolism drives a proinflammatory phenotype, J. Biol. Chem., 289, 7884, 10.1074/jbc.M113.522037 Gardinassi, 2017, Metabolome-wide association study of peripheral parasitemia in Plasmodium vivax malaria, Int. J. Med. Microbiol. IJMM, 307, 533, 10.1016/j.ijmm.2017.09.002 Gardinassi, 2017, Bioinformatics tools for the interpretation of metabolomics data, Curr. Pharmacol. Rep., 3, 374, 10.1007/s40495-017-0107-0 Gardinassi, 2018, Integrative metabolomics and transcriptomics signatures of clinical tolerance to Plasmodium vivax reveal activation of innate cell immunity and T cell signaling, Redox Biol., 17, 158, 10.1016/j.redox.2018.04.011 Granucci, F., Zanoni, I., 2013. Role of CD14 in host protection against infections and in metabolism regulation. Front. Cell. Infect. Microbiol. 3. Haziot, 1996, Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CD14-deficient mice, Immunity, 4, 407, 10.1016/S1074-7613(00)80254-X Jha, 2015, Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization, Immunity, 42, 419, 10.1016/j.immuni.2015.02.005 Johnson, 2004, A genetic basis for the “Adonis” phenotype of low adiposity and strong bones, FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol., 18, 1282 Li, 2013, Predicting network activity from high throughput metabolomics, PLoS Comput. Biol., 9, e1003123, 10.1371/journal.pcbi.1003123 Luche, 2013, Metabolic endotoxemia directly increases the proliferation of adipocyte precursors at the onset of metabolic diseases through a CD14-dependent mechanism, Mol. Metab., 2, 281, 10.1016/j.molmet.2013.06.005 Morris, 1998, Differential regulation of arginases and inducible nitric oxide synthase in murine macrophage cells, Am. J. Physiol., 275, E740 Okabe, 2016, Tissue biology perspective on macrophages, Nat. Immunol., 17, 9, 10.1038/ni.3320 Pereira, 2020, Immunomodulatory activity of hyaluronidase is associated with metabolic adaptations during acute inflammation, Inflamm. Res Off. J. Eur. Histamine Res. Soc. Al, 69, 105 Pucca, 2015, Tityus serrulatus venom–A lethal cocktail, Toxicon Off. J. Int. Soc. Toxinol., 108, 272, 10.1016/j.toxicon.2015.10.015 Puchalska, P., Huang, X., Martin, S.E., Han, X., Patti, G.J., Crawford, P.A., 2018. Isotope Tracing Untargeted Metabolomics Reveals Macrophage Polarization-State-Specific Metabolic Coordination across Intracellular Compartments. iScience 9, 298–313. 10.1016/j.isci.2018.10.029. Rattigan, 2018, Metabolomic profiling of macrophages determines the discrete metabolomic signature and metabolomic interactome triggered by polarising immune stimuli, PLOS ONE, 13, e0194126, 10.1371/journal.pone.0194126 Reis, 2019, Scorpion envenomation and inflammation: beyond neurotoxic effects, Toxicon Off. J. Int. Soc. Toxinology, 167, 174, 10.1016/j.toxicon.2019.06.219 Reis, 2020, Interleukin-1 receptor-induced PGE2 production controls acetylcholine-mediated cardiac dysfunction and mortality during scorpion envenomation, Nat. Commun., 11, 5433, 10.1038/s41467-020-19232-8 Roncon-Albuquerque, 2008, Attenuation of the cardiovascular and metabolic complications of obesity in CD14 knockout mice, Life Sci., 83, 502, 10.1016/j.lfs.2008.07.021 Röszer, 2018, Understanding the biology of self-renewing macrophages, Cells, 7, 103, 10.3390/cells7080103 Sadik, 2012, Lipid-cytokine-chemokine cascades orchestrate leukocyte recruitment in inflammation, J. Leukoc. Biol., 91, 207, 10.1189/jlb.0811402 Sajti, 2020, Transcriptomic and epigenetic mechanisms underlying myeloid diversity in the lung, Nat. Immunol., 21, 221, 10.1038/s41590-019-0582-z Viola, 2019, The metabolic signature of macrophage responses, Front. Immunol., 10, 10.3389/fimmu.2019.01462 von Moltke, 2012, Rapid induction of inflammatory lipid mediators by the inflammasome in vivo, Nature, 490, 107, 10.1038/nature11351 Xue, 2014, Transcriptome-based network analysis reveals a spectrum model of human macrophage activation, Immunity, 40, 274, 10.1016/j.immuni.2014.01.006 Yu, 2013, Hybrid feature detection and information accumulation using high-resolution LC-MS metabolomics data, J. Proteome Res., 12, 1419, 10.1021/pr301053d Zanoni, 2012, CD14 and NFAT mediate lipopolysaccharide-induced skin edema formation in mice, J. Clin. Invest., 122, 1747, 10.1172/JCI60688 Zhang, 2020, Selenomethionine supplementation reduces lesion burden, improves vessel function and modulates the inflammatory response within the setting of atherosclerosis, Redox Biol., 29, 10.1016/j.redox.2019.101409 Zoccal, K.F., Bitencourt, C. da S., Paula-Silva, F.W.G., Sorgi, C.A., de Castro Figueiredo Bordon, K., Arantes, E.C., Faccioli, L.H., 2014. TLR2, TLR4 and CD14 recognize venom-associated molecular patterns from Tityus serrulatus to induce macrophage-derived inflammatory mediators. PloS One 9, e88174. 10.1371/journal.pone.0088174. Zoccal, 2016, Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venom-induced mortality, Nat. Commun., 7, 10760, 10.1038/ncomms10760 Zoccal, 2018, CD36 shunts eicosanoid metabolism to repress CD14 licensed interleukin-1β release and inflammation, Front. Immunol., 9, 890, 10.3389/fimmu.2018.00890 Zoccal, 2019, EP80317 restrains inflammation and mortality caused by scorpion envenomation in mice, Front. Pharmacol., 10, 171, 10.3389/fphar.2019.00171