CAFOR: congestion avoidance using fuzzy logic to find an optimal routing path in 6LoWPAN networks

J. Shreyas1, Hemant Kumar Singh2, Soumya Tiwari2, N. N. Srinidhi2, Sharad Kumar2
1Dept. of Computer Science and Engineering, University Visvesvaraya College of Engineering, Bangalore, India
2Department of Computer Science and Engineering, University Visvesvaraya College of Engineering, Bangalore, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Shreyas J, Dilip Kumar SM (2019) A Survey on Computational Intelligence Techniques for Internet of Things. In: International Conference on Communication and Intelligent Systems, Springer, Singapore, PP 271–282

Shreyas J, Singh H, Bhutani J, Pandit S, Srinidhi NN, Dilip Kumar SM (2019) Congestion Aware Algorithm using Fuzzy Logic to Find an Optimal Routing Path for IoT Networks. In: International Conference on Computational Intelligence and Knowledge Economy (ICCIKE), IEEE, pp. 141–145

Shreyas J, Jumnal A, Dilip Kumar SM, Venugopal KR (2020) Application of computational intelligence techniques for internet of things: an extensive survey. International Journal of Computational Intelligence Studies 9, 3:234–288

Yang Z, Chang CH (2019) 6LoWPAN Overview and Implementations. In: International Conference on Embedded Wireless Systems and Networks (EWSN) 2019 25–27 February, Beijing, China, pp. 357–361

Peres B, Santos BP, Otavio AO, Goussevskaia O, Vieira MA, Vieira LF, Loureiro AA (2018) Matrix: Multihop address allocation and dynamic any-to-any routing for 6lowpan. Comput Netw 140:28–40

Qiu Y, Ma M (2018) Secure group mobility support for 6lowpan networks. IEEE Internet Things J 5(2):1131–1141

Raoof A, Matrawy A, Lung C-H (2018) Routing attacks and mitigation methods for RPL-based Internet of Things. IEEE Communications Surveys & Tutorials 21, no. 2 pp 1582–1606

Chan CO, Lau HC, Fan Y (2018) Iot data acquisition in fashion retail application: Fuzzy logic approach. In: 2018 international conference on artificial intelligence and big data (ICAIBD). IEEE, pp 52–56

Kim H, Paek J, Bahk S (2015) Qu-rpl: Queue utilization based rpl for load balancing in large scale industrial applications. 06

Al-Kashoash H (2020) Optimization-based hybrid congestion alleviation. In: Congestion Control for 6LoWPAN Wireless Sensor Networks: Toward the Internet of Things, Springer, Cham, pp 135–156

Kim H, Kim H, Paek J, Bahk S (2017) Load balancing under heavy traffic in RPL routing protocol for low power and lossy networks. IEEE Trans Mob Comput 16(4):964–979

Sunitha G, Kumar SD, Kumar BV (2017) Energy balanced zone based routing protocol to mitigate congestion in wireless sensor networks. Wirel Pers Commun 97(2):2683–2711

Hassan R, Jubair AM, Azmi K, Bakar A (2016) Adaptive congestion control mechanism in coap application protocol for internet of things (Iot). In: 2016 international conference on signal processing and communication (ICSC). IEEE, pp 121–125

Bhandari K, Hosen A, Cho G (2018) Coar: congestion-aware routing protocol for low power and lossy networks for iot applications. Sensors 18(11):3838. https://doi.org/10.3390/s18113838

Hellaoui H, Koudil M (2015) Bird flocking congestion control for coap/rpl/6lowpan networks. In: Proceedings of the 2015 workshop on IoT challenges in mobile and industrial systems. ACM, pp 25–30

Musaddiq A, Zikria Y, Nain Z, Kim SW (2020) Routing protocol for low-power and lossy networks for heterogeneous traffic network. EURASIP J Wirel Commun Netw 2020:01

Chakravarthi R, Gomathy C (2011) Internet of things: a survey on the security of IoT frameworks. Indian J Comput Sci Eng (IJCSE) 3(3):476–483

Karkazis P et al (2012) Design of primary and composite routing metrics for RPL-compliant wireless sensor networks. In 2012 international conference on telecommunications and multimedia (TEMU), IEEE, pp 13–18

Shen H, Bai G, Zhao L, Ge J, Tang Z (2015) L2or: low-cost lowcomplexity opportunistic routing for wireless sensor networks. Wirel Personal Commun 82(1):401–422

Lamaazi H, Benamar N, Imaduddin MI, Jara AJ (2015) Performance assessment of the routing protocol for low power and lossy networks. In: 2015 international conference on wireless networks and mobile communications (WINCOM). IEEE, pp 1–8

Rathod V, Jeppu N, Sastry S, Singala S, Tahiliani MP (2019) CoCoA++: Delay gradient based congestion control for Internet of Things. J. abb title 100:1053–1072