CRYSTAL14: A program for theab initioinvestigation of crystalline solids

International Journal of Quantum Chemistry - Tập 114 Số 19 - Trang 1287-1317 - 2014
Roberto Dovesi1, Roberto Orlando1, Alessandro Erba1, Claudio M. Zicovich‐Wilson2, Bartolomeo Civalleri1, Silvia Casassa1, Lorenzo Maschio1, Matteo Ferrabone1, Marco De La Pierre1, Philippe D’Arco3,4, Mariella Causa5, Michel Rérat6, Bernard Kirtman7
1Dipartimento di Chimica Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino via Giuria 5 Torino I‐10125 Italy
2Facultad de Ciencias Universidad Autónoma del Estado de Morelos Av. Universidad, 1001, Col. Chamilpa Cuernavaca Morelos 62209 Mexico
3CNRS UMR 7193, Institut des Sciences de la Terre Paris (iSTeP) Paris F‐75005 France
4Sorbonne Universités, UPMC Univ Paris 06, UMR 7193, Institut des Sciences de la Terre Paris (iSTeP) Paris F‐75005 France
5Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli Federico II, Napoli, Italy
6Equipe de Chimie Physique IPREM UMR5254, Université de Pau et des Pays de l'Adour Pau 64000 France
7Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106

Tóm tắt

The capabilities of the Crystal14program are presented, and the improvements made with respect to the previous Crystal09version discussed. Crystal14is anab initiocode that uses a Gaussian‐type basis set: both pseudopotential and all‐electron strategies are permitted; the latter is not much more expensive than the former up to the first‐second transition metal rows of the periodic table. A variety of density functionals is available, including as an extreme case Hartree–Fock; hybrids of various nature (global, range‐separated, double) can be used. In particular, a very efficient implementation of global hybrids, such as popular B3LYP and PBE0 prescriptions, allows for such calculations to be performed at relatively low computational cost. The program can treat on the same grounds zero‐dimensional (molecules), one‐dimensional (polymers), two‐dimensional (slabs), as well as three‐dimensional (3D; crystals) systems. No spurious 3D periodicity is required for low‐dimensional systems as happens when plane‐waves are used as a basis set. Symmetry is fully exploited at all steps of the calculation; this permits, for example, to investigate nanotubes of increasing radius at a nearly constant cost (better than linear scaling!) or to perform self‐consistent‐field (SCF) calculations on fullerenes as large as (10,10), with 6000 atoms, 84,000 atomic orbitals, and 20 SCF cycles, on a single core in one day. Three versions of the code exist, serial, parallel, and massive‐parallel. In the second one, the most relevant matrices are duplicated, whereas in the third one the matrices in reciprocal space are distributed for diagonalization. All the relevant vectors are now dynamically allocated and deallocated after use, making Crystal14much more agile than the previous version, in which they were statically allocated. The program now fits more easily in low‐memory machines (as many supercomputers nowadays are). Crystal14can be used on parallel machines up to a high number of cores (benchmarks up to 10,240 cores are documented) with good scalability, the main limitation remaining the diagonalization step. Many tensorial properties can be evaluated in a fully automated way by using a single input keyword: elastic, piezoelectric, photoelastic, dielectric, as well as first and second hyperpolarizabilies, electric field gradients, Born tensors and so forth. Many tools permit a complete analysis of the vibrational properties of crystalline compounds. The infrared and Raman intensities are now computed analytically and related spectra can be generated. Isotopic shifts are easily evaluated, frequencies of only a fragment of a large system computed and nuclear contribution to the dielectric tensor determined. New algorithms have been devised for the investigation of solid solutions and disordered systems. The topological analysis of the electron charge density, according to the Quantum Theory of Atoms in Molecules, is now incorporated in the code via the integrated merge of theTopondpackage. Electron correlation can be evaluated at the Möller–Plesset second‐order level (namely MP2) and a set of double‐hybrids are presently available via the integrated merge with the Cryscorprogram. © 2014 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

Pisani C., 1988, of Lecture Notes in Chemistry Series

Dovesi R., 1988, QCPE Program No

10.1002/qua.560290608

10.1002/(SICI)1097-461X(1998)67:5<299::AID-QUA3>3.0.CO;2-Q

10.1002/(SICI)1097-461X(1998)67:5<311::AID-QUA4>3.0.CO;2-Y

10.1063/1.4730666

10.1016/j.cpc.2009.04.022

10.1007/s00269-013-0630-4

10.1007/s00269-013-0647-8

10.1063/1.4788831

10.1103/PhysRevB.88.035102

10.1103/PhysRevB.88.045121

10.1002/jcc.20905

10.1063/1.2817596

10.1088/1742-6596/117/1/012016

10.1063/1.3043366

10.1063/1.3263919

10.1063/1.3447387

10.1002/jcc.20019

10.1002/jcc.20120

10.1063/1.4824442

10.1063/1.4824443

10.1063/1.4767438

10.1063/1.4826136

10.1002/jcc.21750

10.1021/jp901993e

10.1063/1.4772960

10.1002/jcc.23138

10.1107/S0108767313005011

10.1088/0953-8984/25/10/105401

10.1088/0953-8984/25/35/355401

Gatti C., 1996, TOPOND‐96: An Electron Density Topological Program for Systems Periodic in N (N = 0‐3) Dimensions

10.1103/PhysRevB.84.245102

10.1002/jcc.22907

Dovesi R., 2014, CRYSTAL14 User's Manual

Available athttp://www.crystal.unito.it/tutorials.

10.1002/jcc.21370

10.1039/b905676a

10.1021/jp111427j

Press W. H., 1989, Numerical Recipes: The Art of Scientific Computing

10.1021/j100238a013

10.1021/ja00504a009

10.1016/0009-2614(83)80703-9

10.1002/(SICI)1096-987X(19960115)17:1<49::AID-JCC5>3.0.CO;2-0

10.1063/1.462844

10.1063/1.1340578

10.1021/ct900680f

Polak E., 1971, Computational Methods in Optimizations

10.1103/PhysRevB.65.014111

10.1021/jp402340z

10.1063/1.4808156

10.1039/c3cp50979f

Kahaly M. U., 2007, J. Nanosci. Nanotechnol., 1787, 7

10.1103/PhysRevLett.80.4502

Musgrave M. J. P., 1970, Crystal Acoustics

Auld B. A., 1973, Acoustic Fields and Waves in Solids

10.1029/2000RG000088

10.1088/0953-8984/16/14/014

Anderson D. L., 1989, Theory of the Earth

10.1103/PhysRevB.67.235406

10.1007/s10853-009-3643-0

10.1016/j.matlet.2005.06.016

10.1126/science.276.5311.392

10.1103/PhysRevB.89.045103

Cady W., 1964, Piezoelectricity

10.1063/1.1515363

10.1006/jssc.1999.8316

10.1021/ic200354p

El‐Kelany K. E., J. Phys.: Condens. Matter

10.1364/JOSA.48.000556

10.1107/S0365110X64002080

10.1016/0022-3697(59)90316-6

10.1063/1.3267861

10.1063/1.3267048

10.1063/1.3690457

10.1103/PhysRevB.83.235421

10.1016/j.commatsci.2012.11.002

10.1103/PhysRevLett.51.1191

10.1295/polymj.4.460

10.1063/1.2428291

10.1103/PhysRev.140.A1133

10.1139/p80-159

10.1063/1.478522

10.1021/j100315a010

10.1021/jp203237m

10.1016/0038-1098(82)91018-3

10.1063/1.469600

10.1002/qua.23160

10.1002/1097-461X(2001)82:1<1::AID-QUA1017>3.0.CO;2-W

10.1016/S0010-4655(01)00172-2

10.1021/jp4099446

Prencipe M., J. Phys. Chem. A

L. Maschio R. Dovesi La chimica e l'industria

Barrow G. M., 1962, Introduction to Molecular Spectroscopy

10.1021/cr00074a004

Decius J., 1977, Molecular Vibrations in Crystals

10.1103/PhysRevB.71.125107

10.1103/PhysRevB.71.214307

10.1103/PhysRevB.1.3494

10.1111/j.1365-2966.2006.10594.x

10.1088/0953-8984/14/11/302

10.1016/0927-0256(96)00008-0

10.1103/PhysRevB.54.11169

10.1103/PhysRevLett.78.4063

10.1103/PhysRevB.78.134106

Hofmeister A. M., 1991, Am. Miner., 76, 880

10.1016/0016-7037(80)90159-3

10.1016/0016-7037(91)90158-2

10.1107/S0108767396005697

10.1107/S0108768184002135

Pisani C., 2011, In Modern Charge Density Analysis

10.1103/PhysRevB.63.045120

10.1107/S0108767304014953

10.1002/qua.10791

10.1021/cr990112c

Bader R. F. W., 1990, Atoms in Molecules ‐ A Quantum Theory, 10.1093/oso/9780198551683.001.0001

10.1524/zkri.220.5.399.65073

Popelier P., 2000, Atoms in Molecules. An Introduction

Macchi P., 2003, Coord. Chem. Phys, 383, 238

10.1107/S0108768195016879

10.1063/1.467882

10.1088/0031-8949/87/04/048102

10.1063/1.458517

10.1021/j100315a002

10.1103/PhysRevB.85.174105

10.1088/0953-8984/9/36/004

10.1107/S0108767386098860

10.1103/PhysRevB.29.2102

10.1098/rspa.1973.0022

10.1103/PhysRevB.47.9385

10.1103/PhysRevB.60.284

10.1002/0471484237.ch5

10.1039/c2cp23927b

10.1103/PhysRev.52.191

10.1063/1.1415745

10.1007/s00214-006-0119-z

10.1007/s00214-009-0619-8

10.1002/qua.24184

10.1016/S0038-1098(97)10112-0

10.1016/S0022-3697(99)00321-2

10.1063/1.4737419

10.1103/PhysRevLett.74.2252

10.1103/PhysRevLett.75.1984

10.1103/PhysRevB.81.165108

10.1039/c0cp01604g

10.1103/PhysRevB.83.125208

10.1063/1.4704546

10.1063/1.1390175

10.1063/1.2126975

10.1021/ct0502763

10.1063/1.2370993

10.1007/s00214-007-0310-x

10.1021/jp066479k

10.1016/S1380-7323(96)80091-4

10.1063/1.2404663

10.1063/1.3524336

10.1063/1.2822021

10.1021/ct800149y

10.1002/qua.20259

10.1021/ct800530u

10.1063/1.2834918

10.1063/1.475007

10.1063/1.2921797

10.1002/jcc.23391

10.1063/1.2148954

10.1063/1.3544215

10.1063/1.1857479

10.1002/jcc.20975

10.1039/b608478h

10.1021/jp801805p

10.1021/ct200352g

R. Peverati D. G. Truhlar Philos. Trans. R. Soc. A

10.1063/1.2085170

10.1103/PhysRevB.85.014111

10.1103/PhysRevB.83.205117

10.1007/978-3-642-18865-7

10.1002/(SICI)1521-3951(199912)216:2<975::AID-PSSB975>3.0.CO;2-N

10.1103/PhysRev.166.599

10.1039/9781849734790-00168

10.1088/0953-8984/24/14/145504

10.1098/rspa.2010.0563

10.1002/jcc.23072