Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các hiệu ứng epigenetic hướng tới cái nhìn mới như là mục tiêu điều trị tiềm năng trong B-thalassemia
Tóm tắt
Sự kích thích hemoglobin thai nhi (HbF) đã cho thấy tiềm năng trong việc điều trị các bệnh β-hemoglobinopathies. Kích thích HbF trong β-thalassemia có thể vượt qua sự tạo huyết không hiệu quả và do đó chấm dứt phụ thuộc vào truyền máu đối với những bệnh nhân trước đây cần truyền máu. Một số miRNA đã được tìm thấy có khả năng tái kích hoạt biểu hiện γ-globin và tăng HbF. Trong nghiên cứu này, chúng tôi nhằm mục đích điều tra sự biểu hiện của 4 miRNA (miR-15a, miR-16-1, miR-96, và miR-486-3p) ở những bệnh nhân thalassemia có HbF cao và tương quan mức độ của chúng với mức HbF của bệnh nhân, sau đó, để dự đoán vai trò chính xác của các miRNA đã nghiên cứu trong tạo huyết, một phân tích sinh tin học đã được thực hiện. Chúng tôi đã thực hiện phân tích sinh tin học này để xác định mạng lưới các gen được miRNA điều chỉnh và điều tra thêm sự tương tác giữa tất cả chúng thông qua sự tham gia của chúng trong quá trình tạo huyết. Trong nghiên cứu này, sự biểu hiện khác biệt đã được đo bằng qRT-PCR cho 40 bệnh nhân có HbF cao và so sánh với 20 đối chứng khỏe mạnh. Phân tích sinh tin học đã được tiến hành bao gồm chú thích chức năng và phân tích làm giàu đường đi. Các microRNA đã nghiên cứu được điều chỉnh đáng kể ở bệnh nhân thalassemia có tương quan với HbF. Chú thích chức năng và phân tích làm giàu đường đi đã tiết lộ vai trò chính của miR-486-3p và miR-15a trong kích thích HbF. MiR-486-3p và miR-15a là then chốt cho việc kích thích HbF. Cần có thêm các nghiên cứu xác thực.
Từ khóa
#HbF #β-thalassemia #miRNA #tạo huyết #sinh tin họcTài liệu tham khảo
Ansari SH, Shamsi TS, Ashraf M, Perveen K, Farzana T, Bohray M, Erum S, Mehboob T (2011) Efficacy of hydroxyurea in providing transfusion independence in β-thalassemia. J Pediatr Hematol Oncol 33(5):339–343. https://doi.org/10.1097/MPH.0b013e31821b0770
Aron DC (1992) Insulin-like growth factor I and erythropoiesis. BioFactors (Oxford, England) 3(4):211–216
Azzouzi I, Moest H, Winkler J, Fauchère JC, Gerber AP, Wollscheid B, Stoffel M, Schmugge M, Speer O (2011) Microrna-96 directly inhibits γ-globin expression in human erythropoiesis. PLoS One 6(7). https://doi.org/10.1371/journal.pone.0022838
Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E (n.d.) miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non–small cell lung cancer. Cancer Res 69(13):5553–5559. https://doi.org/10.1158/0008-5472.CAN-08-4277
Bianchi N, Zuccato C, Finotti A, Lampronti I, Borgatti M, Gambari R (2012) Involvement of miRNA in erythroid differentiation. Epigenomics 4(1):51–65. https://doi.org/10.2217/epi.11.104
Blank V, Kim MJ, Andrews NC (1997) Human MafG is a functional partner for p45 NF-E2 in activating globin gene expression. Blood 89(11):3925–3935
Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D’Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R (2008) The miR-15a–miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14:1271
Budzinska M, Owczarz M, Pawlik-Pachucka E, Roszkowska-Gancarz M, Slusarczyk P, Puzianowska-Kuznicka M (2016) miR-96, miR-145 and miR-9 expression increases, and IGF-1R and FOXO1 expression decreases in peripheral blood mononuclear cells of aging humans. BMC Geriatr 16(1):200. https://doi.org/10.1186/s12877-016-0379-y
Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu C-G, Kipps TJ, Negrini M, Croce CM (2008) MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A 105(13):5166–5171. https://doi.org/10.1073/pnas.0800121105
Cao A, Galanello R (2010) Beta-thalassemia. Genet Med 12(2):61–76. https://doi.org/10.1097/GIM.0b013e3181cd68ed
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu C-G, Kipps TJ, Negrini M, Croce CM (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102(39):13944–13949. https://doi.org/10.1073/pnas.0506654102
Cittelly DM, Das PM, Salvo VA, Fonseca JP, Burow ME, Jones FE (2010) Oncogenic HER2{Delta}16 suppresses miR-15a/16 and deregulates BCL-2 to promote endocrine resistance of breast tumors. Carcinogenesis 31(12):2049–2057. https://doi.org/10.1093/carcin/bgq192
Cui S, Tanabe O, Sierant M, Shi L, Campbell A, Lim K-C, Engel JD (2015) Compound loss of function of nuclear receptors Tr2 and Tr4 leads to induction of murine embryonic β-type globin genes. Blood 125(9):1477–1487. https://doi.org/10.1182/blood-2014-10-605022
Damnernsawad A, Kong G, Wen Z, Liu Y, Rajagopalan A, You X, Wang J, Zhou Y, Ranheim EA, Luo HR, Chang Q, Zhang J (2016) Kras is required for adult hematopoiesis. Stem Cells (Dayton, Ohio) 34(7):1859–1871. https://doi.org/10.1002/stem.2355
Dong P, Mai Y, Zhang Z, Mi L, Wu G, Chu G, Yang G, Sun S (2014) MiR-15a/b promote adipogenesis in porcine pre-adipocyte via repressing FoxO1. Acta Biochim Biophys Sin 46(7):565–571. https://doi.org/10.1093/abbs/gmu043
Du M-J, Lv X, Hao D-L, Zhao G-W, Wu X-S, Wu F, Liu D-P, Liang C-C (2008) MafK/NF-E2 p18 is required for β-globin genes activation by mediating the proximity of LCR and active β-globin genes in MEL cell line. Int J Biochem Cell Biol 40(8):1481–1493. https://doi.org/10.1016/j.biocel.2007.11.004
Dweep H, Gretz N, Sticht C (2014) miRWalk database for miRNA-target interactions. Methods Mol Biol (Clifton, NJ) 1182:289–305. https://doi.org/10.1007/978-1-4939-1062-5_25
Eguchi M, Eguchi-Ishimae M, Tojo A, Morishita K, Suzuki K, Sato Y, Kudoh S, Tanaka K, Setoyama M, Nagamura F, Asano S, Kamada N (1999) Fusion of ETV6 to neurotrophin-3 receptor TRKC in acute myeloid leukemia with t(12;15)(p13;q25). Blood 93(4):1355–1363
El-Kamah GY, Amr KS (2015) Thalassemia—from genotype to phenotype. In: Inherited hemoglobin disorders. InTech Retrieved from http://www.intechopen.com/books/inherited-hemoglobin-disorders/thalassemia-from-genotype-to-phenotype
Fard AD, Hosseini SA, Shahjahani M, Salari F, Jaseb K (2013) Evaluation of novel fetal hemoglobin inducer drugs in treatment of β-hemoglobinopathy disorders. Int J Hematol-Oncol Stem Cell Res 7(3):47–54
Geest CR, Coffer PJ (2009) MAPK signaling pathways in the regulation of hematopoiesis. J Leukoc Biol 86(2):237–250. https://doi.org/10.1189/jlb.0209097
Gnanapragasam MN, Scarsdale JN, Amaya ML, Webb HD, Desai MA, Walavalkar NM, Wang SZ, Zu Zhu S, Ginder GD, Williams DC (2011) p66Alpha-MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex. Proc Natl Acad Sci U S A 108(18):7487–7492. https://doi.org/10.1073/pnas.1015341108
Guttilla IK, White BA (2009) Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284(35):23204–23216. https://doi.org/10.1074/jbc.M109.031427
Hagh MF, Fard AD, Saki N, Shahjahani M, Kaviani S (2011) Molecular mechanisms of hemoglobin F induction. Int J Hematol-Oncol Stem Cell Res 5(4):5–9
Havelange V, Garzon R (2010) Micrornas: emerging key regulators of hematopoiesis. Am J Hematol 85(12):935–942. https://doi.org/10.1002/ajh.21863
Hojjati MT, Azarkeivan A, Pourfathollah AA, Amirizadeh N (2017) Comparison of MicroRNAs mediated in reactivation of the γ-globin in β-thalassemia patients, responders and non-responders to hydroxyurea. Hemoglobin 41(2):110–115. https://doi.org/10.1080/03630269.2017.1290651
Ingley E (2012) Integrating novel signaling pathways involved in erythropoiesis. IUBMB Life 64(5):402–410. https://doi.org/10.1002/iub.1024
Juntilla MM, Patil VD, Calamito M, Joshi RP, Birnbaum MJ, Koretzky GA (2010) AKT1 and AKT2 maintain hematopoietic stem cell function by regulating reactive oxygen species. Blood 115(20):4030–4038. https://doi.org/10.1182/blood-2009-09-241000
Kim M, Slack FJ (2014a) MicroRNA-mediated regulation of KRAS in cancer. J Hematol Oncol 7:84. https://doi.org/10.1186/s13045-014-0084-2
Lai C-Y, Wu Y-T, Yu S-L, Yu Y-H, Lee S-Y, Liu C-M, Hsieh W-S, Hwu H-G, Chen P-C, Jeng S-F, Chen WJ (2014) Modulated expression of human peripheral blood microRNAs from infancy to adulthood and its role in aging. Aging Cell 13(4):679–689. https://doi.org/10.1111/acel.12225
Lai K, Jia S, Yu S, Luo J, Yunyan He A, Lai K, Jia S, Yu S, Luo J, Yunyan He A, Lai K, Jia S, Yu S, He JL, Y. (2017) Genome-wide analysis of aberrantly expressed lncRNAs and miRNAs with associated co-expression and ceRNA networks in B-thalassemia and hereditary persistence of fetal hemoglobin. Oncotarget 5(0):49931–49943. https://doi.org/10.18632/oncotarget.18263
Lawrie CH (2010) microRNA expression in erythropoiesis and erythroid disorders. Br J Haematol 150(2):144–151. https://doi.org/10.1111/j.1365-2141.2009.07978.x
Li H, Zhao H, Wang D, Yang R (2011) microRNA regulation in megakaryocytopoiesis. Br J Haematol 155(3):298–307. https://doi.org/10.1111/j.1365-2141.2011.08859.x
Lin H, Dai T, Xiong H, Zhao X, Chen X, Yu C, Li J, Wang X, Song L (2010) Unregulated miR-96 induces cell proliferation in human breast cancer by downregulating transcriptional factor FOXO3a. PLoS One 5(12):e15797–e15797. https://doi.org/10.1371/journal.pone.0015797
Litwińska Z, Machaliński B (2017) miRNAs in chronic myeloid leukemia: small molecules, essential function. Leuk Lymphoma 58(6):1297–1305. https://doi.org/10.1080/10428194.2016.1243676
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
Lulli V, Romania P, Morsilli O, Cianciulli P, Gabbianelli M, Testa U, Giuliani A, Marziali G (2013) MicroRNA-486-3p regulates γ-globin expression in human erythroid cells by directly modulating BCL11A. PLoS One 8(4):1–12. https://doi.org/10.1371/journal.pone.0060436
Miyamoto K, Miyamoto T, Kato R, Yoshimura A, Motoyama N, Suda T (2008) FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging. Blood 112(12):4485–4493. https://doi.org/10.1182/blood-2008-05-159848
Modell B, Darlison M (2008) Public health reviews global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ 86(6):480–487. https://doi.org/10.2471/blt.06.036673
Morison IM, Eccles MR, Reeve AE (2000) Imprinting of insulin-like growth factor 2 is modulated during hematopoiesis. Blood 96(9):3023–8. PMID: 11049980.
Myatt SS, Wang J, Monteiro LJ, Christian M, Ho K-K, Fusi L, Dina RE, Brosens JJ, Ghaem-Maghami S, Lam EW-F (2010) Definition of microRNAs that repress expression of the tumor suppressor gene FOXO1 in endometrial cancer. Cancer Res 70(1):367–377. https://doi.org/10.1158/0008-5472.CAN-09-1891
Noh S-J, Miller SH, Lee YT, Goh S-H, Marincola FM, Stroncek DF, Reed C, Wang E, Miller JL (2009) Let-7 microRNAs are developmentally regulated in circulating human erythroid cells. J Transl Med 7:98. https://doi.org/10.1186/1479-5876-7-98
Perrine SP (2012) Novel therapeutic agents for HbF induction: a new era for treatment of β thalassemia? Thalassemia Rep 1:21–24. https://doi.org/10.4081/thal.2011.s2.e7
Rund D, Rachmilewitz E (2005) Beta-thalassemia. N Engl J Med 353:1135–1146
Sankaran VG, Menne TF, Šćepanović D, Vergilio J-A, Ji P, Kim J, Thiru P, Orkin SH, Lander ES, Lodish HF (2011) MicroRNA-15a and -16-1 act via MYB to elevate fetal hemoglobin expression in human trisomy 13. Proc Natl Acad Sci U S A 108(4):1519–1524. https://doi.org/10.1073/pnas.1018384108
Sankaran VG, Orkin SH (2013) The switch from fetal to adult hemoglobin. Cold Spring Harb Perspect Med 3(1). https://doi.org/10.1101/cshperspect.a011643
Spinetti G, Fortunato O, Caporali A, Shantikumar S, Marchetti M, Meloni M, Descamps B, Floris I, Sangalli E, Vono R, Faglia E, Specchia C, Pintus G, Madeddu P, Emanueli C (2013) MicroRNA-15a and microRNA-16 impair human circulating proangiogenic cell functions and are increased in the proangiogenic cells and serum of patients with critical limb ischemia. Circ Res 112(2):335–346. https://doi.org/10.1161/CIRCRESAHA.111.300418
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452. https://doi.org/10.1093/nar/gku1003
Tagawa H, Ikeda S, Sawada K (2013) Role of microRNA in the pathogenesis of malignant lymphoma. Cancer Sci 104(7):801–809. https://doi.org/10.1111/cas.12160
Wang X, Chu Y, Wang W, Yuan W (2016) mTORC signaling in hematopoiesis. Int J Hematol 103(5):510–518. https://doi.org/10.1007/s12185-016-1944-z
Yun WJ, Kim YW, Kang Y, Lee J, Dean A, Kim A (2014) The hematopoietic regulator TAL1 is required for chromatin looping between the β-globin LCR and human γ-globin genes to activate transcription. Nucleic Acids Res 42(7):4283–4293. https://doi.org/10.1093/nar/gku072